A Comparative Study of Shared Frailty Models for Kidney Infection Data with Generalized Exponential Baseline Distribution

David D. Hanagal, Alok D. Dabade
{"title":"A Comparative Study of Shared Frailty Models for Kidney Infection Data with Generalized Exponential Baseline Distribution","authors":"David D. Hanagal, Alok D. Dabade","doi":"10.6339/JDS.2013.11(1).1126","DOIUrl":null,"url":null,"abstract":"Shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor (frailty) and baseline hazard function which is common to all individuals. There are certain as- sumptions about the baseline distribution and distribution of frailty. Mostly assumption of gamma distribution is considered for frailty distribution. To compare the results with gamma frailty model, we introduce three shared frailty models with generalized exponential as baseline distribution. The other three shared frailty models are inverse Gaussian shared frailty model, compound Poisson shared frailty model and compound negative binomial shared frailty model. We t these models to a real life bivariate survival data set of McGilchrist and Aisbett (1991) related to kidney infection using Markov Chain Monte Carlo (MCMC) technique. Model comparison is made using Bayesian model selection criteria and a better model is suggested for the data.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/JDS.2013.11(1).1126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor (frailty) and baseline hazard function which is common to all individuals. There are certain as- sumptions about the baseline distribution and distribution of frailty. Mostly assumption of gamma distribution is considered for frailty distribution. To compare the results with gamma frailty model, we introduce three shared frailty models with generalized exponential as baseline distribution. The other three shared frailty models are inverse Gaussian shared frailty model, compound Poisson shared frailty model and compound negative binomial shared frailty model. We t these models to a real life bivariate survival data set of McGilchrist and Aisbett (1991) related to kidney infection using Markov Chain Monte Carlo (MCMC) technique. Model comparison is made using Bayesian model selection criteria and a better model is suggested for the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有广义指数基线分布的肾脏感染数据共享脆弱性模型的比较研究
在生存分析中,共享脆弱性模型通常用于建模异质性。最常见的共享脆弱性模型是一种模型,其中风险函数是随机因素(脆弱性)和所有个体共同的基线风险函数的乘积。关于虚弱的基线分布和分布,有一些假设。脆弱性分布主要考虑伽玛分布的假设。为了将结果与伽玛脆弱性模型进行比较,我们引入了三个以广义指数为基线分布的共享脆弱性模型。其他三种共享脆弱性模型分别是逆高斯共享脆弱性、复合泊松共享脆弱性和复合负二项共享脆弱性。我们使用马尔可夫链蒙特卡罗(MCMC)技术将这些模型应用于McGilchrist和Aisbett(1991)的与肾脏感染相关的真实生活双变量生存数据集。使用贝叶斯模型选择标准对模型进行了比较,并为数据提出了更好的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood Estimation for Shape-restricted Single-index Hazard Models. Central Posterior Envelopes for Bayesian Functional Principal Component Analysis. Optimal Physician Shared-Patient Networks and the Diffusion of Medical Technologies. Generating General Preferential Attachment Networks with R Package wdnet Identification of Optimal Combined Moderators for Time to Relapse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1