Mechanical behaviour and fracture evolution of coal specimens containing an over‐excavated hole: Experimental study and numerical modelling
IF 1.8 3区 材料科学Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTINGStrainPub Date : 2023-05-12DOI:10.1111/str.12443
Zhongyi Man, Liu Chun, Mingyao Wei, Yonglong Wang
{"title":"Mechanical behaviour and fracture evolution of coal specimens containing an over‐excavated hole: Experimental study and numerical modelling","authors":"Zhongyi Man, Liu Chun, Mingyao Wei, Yonglong Wang","doi":"10.1111/str.12443","DOIUrl":null,"url":null,"abstract":"Utilising a series of mechanically over‐excavated cavities along borehole is a novel technique for enhancing the permeability of soft coal seams and, consequently, gas drainage. The evolution of cracks induced by a wide range of pressure‐relief around an over‐excavated hole is intrinsically complex. In this study, the mechanical behaviour and crack evolution of the specimens containing an over‐excavated hole under uniaxial compression loading were studied by experimental and 3D numerical simulation. The results indicated that the peak strength and elastic modulus of the specimens gradually decrease with increasing cavity diameter and length, which is also verified by the numerical simulation. The inclusion of cylindrical cavities in over‐excavated holes results in reduced crack initiation stress and a greater degradation of peak stress and elastic modulus, despite having an equivalent volume to the ellipsoidal cavity. This is likely attributed to the difference in stress concentration between the cylindrical and ellipsoidal cavities. The crack propagation process can be classified into four stages based on the acoustic emission (AE) event counts, initial crack compaction, stable crack propagation, unstable crack propagation and post‐peak failure stage. The two AE indices, rise angle and average frequency value, demonstrated that the failure is dominated by tensile crack and gradually transformed to shear crack. Stress redistribution is essential in the initiation and propagation of cracks. Tensile stress concentration leads to cracks forming at the top and bottom of the hole, which propagate in the direction of loading. Compressive stress concentration results in shear cracks forming at the left and right sides of the hole, which propagate diagonally. The failure pattern of the specimen is ultimately determined by a combination of tensile and mixed crack propagation. The experimental and numerical results contribute to a deeper understanding of the crack evolution mechanism of coal seams with over‐excavated holes.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12443","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Utilising a series of mechanically over‐excavated cavities along borehole is a novel technique for enhancing the permeability of soft coal seams and, consequently, gas drainage. The evolution of cracks induced by a wide range of pressure‐relief around an over‐excavated hole is intrinsically complex. In this study, the mechanical behaviour and crack evolution of the specimens containing an over‐excavated hole under uniaxial compression loading were studied by experimental and 3D numerical simulation. The results indicated that the peak strength and elastic modulus of the specimens gradually decrease with increasing cavity diameter and length, which is also verified by the numerical simulation. The inclusion of cylindrical cavities in over‐excavated holes results in reduced crack initiation stress and a greater degradation of peak stress and elastic modulus, despite having an equivalent volume to the ellipsoidal cavity. This is likely attributed to the difference in stress concentration between the cylindrical and ellipsoidal cavities. The crack propagation process can be classified into four stages based on the acoustic emission (AE) event counts, initial crack compaction, stable crack propagation, unstable crack propagation and post‐peak failure stage. The two AE indices, rise angle and average frequency value, demonstrated that the failure is dominated by tensile crack and gradually transformed to shear crack. Stress redistribution is essential in the initiation and propagation of cracks. Tensile stress concentration leads to cracks forming at the top and bottom of the hole, which propagate in the direction of loading. Compressive stress concentration results in shear cracks forming at the left and right sides of the hole, which propagate diagonally. The failure pattern of the specimen is ultimately determined by a combination of tensile and mixed crack propagation. The experimental and numerical results contribute to a deeper understanding of the crack evolution mechanism of coal seams with over‐excavated holes.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.