{"title":"A Mathematical Formulation and a Heuristic for the Spatial Scheduling of Mega-Blocks in Shipbuilding Industry","authors":"Namsu Ahn, S. Kim","doi":"10.5957/jspd.05200014","DOIUrl":null,"url":null,"abstract":"\n \n In shipbuilding industry, to reduce the staying time of the ship in a dock, floating crane and floating dock are used to handle the mega-blocks, thus it increased the turnover of the dock. Therefore, spatial scheduling for mega-block in an assembly yard becomes important in shipbuilding industry. However, spatial scheduling of mega-blocks has some unique characteristics compared with the well-known classic bin-packing problem, and not many studies can be found on this issue. This research proposes an enhanced mathematical formulation and a heuristic algorithm for spatial scheduling of mega-block arrangement problem. The formulation provides tight bound compared with the existing formulation, and the proposed heuristic can obtain good quality of the solution in a reasonable amount of time even when the size of the instance became large.\n \n \n \n Shipbuilding industry involves constructing ships and other floating vessels. Block is a base element of the shipbuilding process, and the blocks are assembled and welded in the block assembly shop, and finally erected to a ship in a dry dock. A size of a block is around 15~30 meters with a weight of around 30~300 tons (Zheng et al. 2011), and a large ship consists of around 150 blocks (Koh et al. 2011b). Some blocks are outsourced and timely delivery and quality of blocks have an absolute impact on the ship’s quality. Also, it is possible to shorten the dock duration by receiving blocks from several companies at the same time.\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/jspd.05200014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
In shipbuilding industry, to reduce the staying time of the ship in a dock, floating crane and floating dock are used to handle the mega-blocks, thus it increased the turnover of the dock. Therefore, spatial scheduling for mega-block in an assembly yard becomes important in shipbuilding industry. However, spatial scheduling of mega-blocks has some unique characteristics compared with the well-known classic bin-packing problem, and not many studies can be found on this issue. This research proposes an enhanced mathematical formulation and a heuristic algorithm for spatial scheduling of mega-block arrangement problem. The formulation provides tight bound compared with the existing formulation, and the proposed heuristic can obtain good quality of the solution in a reasonable amount of time even when the size of the instance became large.
Shipbuilding industry involves constructing ships and other floating vessels. Block is a base element of the shipbuilding process, and the blocks are assembled and welded in the block assembly shop, and finally erected to a ship in a dry dock. A size of a block is around 15~30 meters with a weight of around 30~300 tons (Zheng et al. 2011), and a large ship consists of around 150 blocks (Koh et al. 2011b). Some blocks are outsourced and timely delivery and quality of blocks have an absolute impact on the ship’s quality. Also, it is possible to shorten the dock duration by receiving blocks from several companies at the same time.
在造船业中,为了减少船舶在码头的停留时间,采用浮式起重机和浮船坞来搬运巨型块,从而增加了码头的周转量。因此,大型装配体的空间调度问题在船舶工业中具有重要意义。然而,与经典的装箱问题相比,巨型块的空间调度具有一些独特的特点,对该问题的研究并不多见。本文提出了一种改进的大块排列问题空间调度的数学公式和启发式算法。与现有公式相比,该公式具有较强的约束,即使实例规模变大,所提出的启发式算法也能在合理的时间内获得较好的解质量。造船业包括建造船舶和其他浮船。砌块是造船过程中的基本要素,砌块在砌块组装车间进行组装和焊接,最后在干船坞中竖立成船。块的大小约为15~30米,重量约为30~300吨(Zheng et al. 2011),大型船舶由约150块组成(Koh et al. 2011b)。有些砌块是外包的,砌块的及时交付和质量对船舶质量有绝对的影响。此外,可以通过同时接收来自多个公司的区块来缩短停靠时间。
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.