Bayesian Estimation of the Polynomial Time Trend AR(1) Model through Spline Function

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2021-03-27 DOI:10.1080/01966324.2021.1903368
V. Agiwal, J. Jeevan Kumar, Narinder Kumar
{"title":"Bayesian Estimation of the Polynomial Time Trend AR(1) Model through Spline Function","authors":"V. Agiwal, J. Jeevan Kumar, Narinder Kumar","doi":"10.1080/01966324.2021.1903368","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"13 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1903368","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1903368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we develop an estimation procedure for an autoregressive model with polynomial time trend approximated by a spline function. Spline function has the advantage of approximating the non-linear time series in an appropriate degree of polynomial time trend model. For Bayesian parameter estimation, the conditional posterior distribution is obtained under two symmetric loss functions. Due to the complex form of the conditional posterior distribution, Markov Chain Monte Carlo (MCMC) approach is used to estimate the Bayes estimators. The performance of Bayes estimators is compared with that of the corresponding maximum likelihood estimators (MLEs) in terms of mean squared error (MSE) and average absolute bias (AB) via a simulation study. To illustrate the proposed study, import series of Brazil, Russia, India, China, and South Africa (BRICS) countries are analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于样条函数的多项式时间趋势AR(1)模型的贝叶斯估计
摘要本文给出了用样条函数逼近多项式时间趋势的自回归模型的估计方法。样条函数具有在适当程度上逼近非线性时间序列的多项式时间趋势模型的优点。对于贝叶斯参数估计,得到了两个对称损失函数下的条件后验分布。由于条件后验分布的复杂形式,采用马尔可夫链蒙特卡罗(MCMC)方法估计贝叶斯估计量。通过仿真研究,比较了贝叶斯估计器与相应的极大似然估计器在均方误差(MSE)和平均绝对偏差(AB)方面的性能。为了说明所提出的研究,本文分析了巴西、俄罗斯、印度、中国和南非(金砖国家)的进口系列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1