Performance evaluation of backstepping approach for wind power generation system-based permanent magnet synchronous generator and operating under non-ideal grid voltages
Y. Errami, A. Obbadi, S. Sahnoun, M. Ouassaid, M. Maaroufi
{"title":"Performance evaluation of backstepping approach for wind power generation system-based permanent magnet synchronous generator and operating under non-ideal grid voltages","authors":"Y. Errami, A. Obbadi, S. Sahnoun, M. Ouassaid, M. Maaroufi","doi":"10.1504/ijpec.2019.10024034","DOIUrl":null,"url":null,"abstract":"This paper presents a nonlinear control strategy to track the maximum power point for 4 MW-WFS based on Permanent Magnet Synchronous Generator (PMSG) and interconnected to the electrical network. The control schemes are based on nonlinear Backstepping theory to control both PMSG and grid-side converters of a WFS. The main objective of this control is to regulate the velocities of the PMSGs with Maximum Power Point Tracking (MPPT). Besides, the grid-side converter is used to control the dc link voltage and to regulate the power factor at varying wind velocity. The stability of the regulators is obtained using Lyapunov analysis. The simulation results through MATLAB/Simulink are presented and discussed to demonstrate the validity and efficiency of the proposed methodology. Finally, a comparison of results based on the proposed Backstepping approach and conventional Proportional Integral (PI) regulator is provided for different grid voltage conditions and under parameter deviations.","PeriodicalId":38524,"journal":{"name":"International Journal of Power and Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpec.2019.10024034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents a nonlinear control strategy to track the maximum power point for 4 MW-WFS based on Permanent Magnet Synchronous Generator (PMSG) and interconnected to the electrical network. The control schemes are based on nonlinear Backstepping theory to control both PMSG and grid-side converters of a WFS. The main objective of this control is to regulate the velocities of the PMSGs with Maximum Power Point Tracking (MPPT). Besides, the grid-side converter is used to control the dc link voltage and to regulate the power factor at varying wind velocity. The stability of the regulators is obtained using Lyapunov analysis. The simulation results through MATLAB/Simulink are presented and discussed to demonstrate the validity and efficiency of the proposed methodology. Finally, a comparison of results based on the proposed Backstepping approach and conventional Proportional Integral (PI) regulator is provided for different grid voltage conditions and under parameter deviations.
期刊介绍:
IJPEC highlights the latest trends in research in the field of power generation, transmission and distribution. Currently there exist significant challenges in the power sector, particularly in deregulated/restructured power markets. A key challenge to the operation, control and protection of the power system is the proliferation of power electronic devices within power systems. The main thrust of IJPEC is to disseminate the latest research trends in the power sector as well as in energy conversion technologies. Topics covered include: -Power system modelling and analysis -Computing and economics -FACTS and HVDC -Challenges in restructured energy systems -Power system control, operation, communications, SCADA -Power system relaying/protection -Energy management systems/distribution automation -Applications of power electronics to power systems -Power quality -Distributed generation and renewable energy sources -Electrical machines and drives -Utilisation of electrical energy -Modelling and control of machines -Fault diagnosis in machines and drives -Special machines