{"title":"Effects of ultrasonic-assisted alkaline pretreatment on xylose production from pineapple peel waste","authors":"Choosit Hongkulsup, Panchalee Pathanibul","doi":"10.36547/nbc.1175","DOIUrl":null,"url":null,"abstract":"The pineapple industry generates large amounts of unusable waste (peel and core) with adverse environmental impacts. This experimental study aims to systemize the potential of ultrasonic-assisted alkaline pretreatment for xylose production from pineapple peel waste. The best condition for single alkaline pretreatment (1 % NaOH w/v, 100 °C, 60 min) has obtained hemicellulose, cellulose, and lignin composition at 34.80 %, 32.16 %, and 8.66 %, respectively, retained in the biomass. Meanwhile, a combination of alkaline (1 % NaOH, w/v) and ultrasonic (frequency 40 kHz, 45 min) pretreatment has obtained the percentage yield of hemicellulose and lignin at 51.15 % and 7.15 %, respectively. Both single alkaline and ultrasonic-assisted alkaline pretreated samples were subsequently hydrolyzed with 2 % H2SO4 (w/v). After acid hydrolysis for 30 min, the maximum xylose concentration of 48.85 g.L-1 was achieved by using ultrasonic-assisted alkaline pretreatment, while single alkaline pretreatment contributed to the lowest yield of xylose (37.11 g.L-1). It is shown that the ultrasonic-assisted alkaline treatment is more favorable than single alkaline pretreatment as it can produce high xylose concentration after the subsequent hydrolysis. These results indicated that ultrasonic-assisted alkaline pretreatment and its subsequent acid hydrolysis were appropriate for producing xylose from pineapple peel waste.","PeriodicalId":19210,"journal":{"name":"Nova Biotechnologica et Chimica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nova Biotechnologica et Chimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/nbc.1175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The pineapple industry generates large amounts of unusable waste (peel and core) with adverse environmental impacts. This experimental study aims to systemize the potential of ultrasonic-assisted alkaline pretreatment for xylose production from pineapple peel waste. The best condition for single alkaline pretreatment (1 % NaOH w/v, 100 °C, 60 min) has obtained hemicellulose, cellulose, and lignin composition at 34.80 %, 32.16 %, and 8.66 %, respectively, retained in the biomass. Meanwhile, a combination of alkaline (1 % NaOH, w/v) and ultrasonic (frequency 40 kHz, 45 min) pretreatment has obtained the percentage yield of hemicellulose and lignin at 51.15 % and 7.15 %, respectively. Both single alkaline and ultrasonic-assisted alkaline pretreated samples were subsequently hydrolyzed with 2 % H2SO4 (w/v). After acid hydrolysis for 30 min, the maximum xylose concentration of 48.85 g.L-1 was achieved by using ultrasonic-assisted alkaline pretreatment, while single alkaline pretreatment contributed to the lowest yield of xylose (37.11 g.L-1). It is shown that the ultrasonic-assisted alkaline treatment is more favorable than single alkaline pretreatment as it can produce high xylose concentration after the subsequent hydrolysis. These results indicated that ultrasonic-assisted alkaline pretreatment and its subsequent acid hydrolysis were appropriate for producing xylose from pineapple peel waste.