Shuhei Yasumoto, N. Umemoto, H. Lee, Masaru Nakayasu, Satoru Sawai, Tetsushi Sakuma, Takashi Yamamoto, M. Mizutani, K. Saito, T. Muranaka
{"title":"Efficient genome engineering using Platinum TALEN in potato.","authors":"Shuhei Yasumoto, N. Umemoto, H. Lee, Masaru Nakayasu, Satoru Sawai, Tetsushi Sakuma, Takashi Yamamoto, M. Mizutani, K. Saito, T. Muranaka","doi":"10.5511/plantbiotechnology.19.0805a","DOIUrl":null,"url":null,"abstract":"Potato (Solanum tuberosum) is one of the most important crops in the world. However, it is generally difficult to breed a new variety of potato crops because they are highly heterozygous tetraploid. Steroidal glycoalkaloids (SGAs) such as α-solanine and α-chaconine found in potato are antinutritional specialized metabolites. Because of their toxicity following intake, controlling the SGA levels in potato varieties is critical in breeding programs. Recently, genome-editing technologies using artificial site-specific nucleases such as TALEN and CRISPR-Cas9 have been developed and used in plant sciences. In the present study, we developed a highly active Platinum TALEN expression vector construction system, and applied to reduce the SGA contents in potato. Using Agrobacterium-mediated transformation, we obtained three independent transgenic potatoes harboring the TALEN expression cassette targeting SSR2 gene, which encodes a key enzyme for SGA biosynthesis. Sequencing analysis of the target sequence indicated that all the transformants could be SSR2-knockout mutants. Reduced SGA phenotype in the mutants was confirmed by metabolic analysis using LC-MS. In vitro grown SSR2-knockout mutants exhibited no differences in morphological phenotype or yields when compared with control plants, indicating that the genome editing of SGA biosynthetic genes such as SSR2 could be a suitable strategy for controlling the levels of toxic metabolites in potato. Our simple and powerful plant genome-editing system, developed in the present study, provides an important step for future study in plant science.","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"36 3 1","pages":"167-173"},"PeriodicalIF":1.4000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5511/plantbiotechnology.19.0805a","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.19.0805a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 20
Abstract
Potato (Solanum tuberosum) is one of the most important crops in the world. However, it is generally difficult to breed a new variety of potato crops because they are highly heterozygous tetraploid. Steroidal glycoalkaloids (SGAs) such as α-solanine and α-chaconine found in potato are antinutritional specialized metabolites. Because of their toxicity following intake, controlling the SGA levels in potato varieties is critical in breeding programs. Recently, genome-editing technologies using artificial site-specific nucleases such as TALEN and CRISPR-Cas9 have been developed and used in plant sciences. In the present study, we developed a highly active Platinum TALEN expression vector construction system, and applied to reduce the SGA contents in potato. Using Agrobacterium-mediated transformation, we obtained three independent transgenic potatoes harboring the TALEN expression cassette targeting SSR2 gene, which encodes a key enzyme for SGA biosynthesis. Sequencing analysis of the target sequence indicated that all the transformants could be SSR2-knockout mutants. Reduced SGA phenotype in the mutants was confirmed by metabolic analysis using LC-MS. In vitro grown SSR2-knockout mutants exhibited no differences in morphological phenotype or yields when compared with control plants, indicating that the genome editing of SGA biosynthetic genes such as SSR2 could be a suitable strategy for controlling the levels of toxic metabolites in potato. Our simple and powerful plant genome-editing system, developed in the present study, provides an important step for future study in plant science.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.