Frictional behaviour of AA7050/B4Cp hybrid composites

R. Ranjith, P. Giridharan, M. Subramanian
{"title":"Frictional behaviour of AA7050/B4Cp hybrid composites","authors":"R. Ranjith, P. Giridharan, M. Subramanian","doi":"10.1504/ijcmsse.2019.10023921","DOIUrl":null,"url":null,"abstract":"In this work, AA7050 aluminium alloy reinforced with SiCp was fabricated through the liquid stir casting technique. The influence of % reinforcement, sliding speed, applied load and sliding distance on friction coefficient was investigated using a pin on disc equipment with tests based on the design of experiments. The results revealed that the friction coefficient increases with an increase in % reinforcement. Sliding speed, load and distance follow the similar trend that is at saddle point it registers maximum and after that COF decreases with an increase in any of the above-said parameters. The result showed that the presence of a mechanical mixed layer reduces the coefficient of friction and it's broke down leads to an increase in friction factor. The presence of mechanical mixed layer was confirmed through EDAX analysis. A mathematical model for friction coefficient was developed using response surface methodology and the combined effect of process parameters was thoroughly analysed.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2019.10023921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, AA7050 aluminium alloy reinforced with SiCp was fabricated through the liquid stir casting technique. The influence of % reinforcement, sliding speed, applied load and sliding distance on friction coefficient was investigated using a pin on disc equipment with tests based on the design of experiments. The results revealed that the friction coefficient increases with an increase in % reinforcement. Sliding speed, load and distance follow the similar trend that is at saddle point it registers maximum and after that COF decreases with an increase in any of the above-said parameters. The result showed that the presence of a mechanical mixed layer reduces the coefficient of friction and it's broke down leads to an increase in friction factor. The presence of mechanical mixed layer was confirmed through EDAX analysis. A mathematical model for friction coefficient was developed using response surface methodology and the combined effect of process parameters was thoroughly analysed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AA7050/B4Cp杂化复合材料的摩擦性能
本工作采用液体搅拌铸造技术制备了SiCp增强的AA7050铝合金。在试验设计的基础上,采用销盘试验装置研究了配筋率、滑动速度、外加载荷和滑动距离对摩擦系数的影响。结果表明,摩擦系数随配筋率的增加而增大。滑动速度、载荷和距离遵循类似的趋势,即在鞍点处它记录最大值,并且在该趋势之后,COF随着上述任何参数的增加而减小。结果表明,机械混合层的存在降低了摩擦系数,而它的分解导致摩擦系数的增加。通过EDAX分析证实了机械混合层的存在。采用响应面法建立了摩擦系数的数学模型,并深入分析了工艺参数的综合影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
3
期刊介绍: IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.
期刊最新文献
Predicting the tensile behaviour of friction stir welded AA2024 and AA5083 alloy based on artificial neural network and mayfly optimization algorithm Corrosion estimation of Cu and Br based automotive parts exposed to biodiesel environment : Case of RSM and ANN Improving engine's lubrication based on optimized partial micro-textures Contribution of Electrical Resistivity Tomography to the Anticipation of Potential Disasters: Case of Pipe Ramming Works Under Road Embankments Numerical simulation of SiC crystal growth during physical vapor transport using the lattice Boltzmann - phase field model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1