{"title":"Refraction of P- and S-Wave at the Interface of Micropolar Elasticity and Thermoelasticity with Voids","authors":"R. Lianngenga, J. Lalvohbika, Lalawmpuia","doi":"10.1142/S2251237318500053","DOIUrl":null,"url":null,"abstract":"The problem of incident plane waves at the interface of micropolar thermoelastic half-space with voids and micropolar elastic half-space with voids has been attempted. The amplitude and energy ratios of various reflected and refracted waves for the incident [Formula: see text]- and [Formula: see text]-waves are obtained with the help of appropriate boundary conditions at the interface. The effect of linear thermal expansion and microinertia on the amplitude and energy ratios due to the incident [Formula: see text]- and [Formula: see text]-waves are discussed. Numerically and analytically, these amplitude and energy ratios are computed to show the effect of linear thermal expansion and microinertia. It is observed that the effect of linear thermal expansion is less for incident [Formula: see text]-wave and the effect of microinertia is less for incident [Formula: see text]-wave.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237318500053","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251237318500053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The problem of incident plane waves at the interface of micropolar thermoelastic half-space with voids and micropolar elastic half-space with voids has been attempted. The amplitude and energy ratios of various reflected and refracted waves for the incident [Formula: see text]- and [Formula: see text]-waves are obtained with the help of appropriate boundary conditions at the interface. The effect of linear thermal expansion and microinertia on the amplitude and energy ratios due to the incident [Formula: see text]- and [Formula: see text]-waves are discussed. Numerically and analytically, these amplitude and energy ratios are computed to show the effect of linear thermal expansion and microinertia. It is observed that the effect of linear thermal expansion is less for incident [Formula: see text]-wave and the effect of microinertia is less for incident [Formula: see text]-wave.