Research on the Reconfiguration Method of Space-Based Exploration Satellite Constellations for Moving Target Tracking at Sea

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY Applied Sciences-Basel Pub Date : 2023-09-07 DOI:10.3390/app131810103
Yao Wang, Junren Luo, Xueqiang Gu, Wanpeng Zhang
{"title":"Research on the Reconfiguration Method of Space-Based Exploration Satellite Constellations for Moving Target Tracking at Sea","authors":"Yao Wang, Junren Luo, Xueqiang Gu, Wanpeng Zhang","doi":"10.3390/app131810103","DOIUrl":null,"url":null,"abstract":"In addressing the challenge of tracking moving targets at sea, our focus has been directed towards the development of a reconstruction methodology founded upon satellite orbital manoeuvres. This endeavour has led us to devise a predictive model for manoeuvres within a geographic coordinate system, alongside the creation of a three-phase orbital manoeuvre model. A Non-dominant Sorting Adaptive Memetic (NSAM) algorithm is proposed in this paper, which is a two-layer multi-objective optimization algorithm that retains the advantages of evolutionary algorithms based on the population’s evolution and has an excellent local optimization ability of local search algorithms. The proposed algorithm can be used to solve multi-objective optimization problems. By comparing the target observation results before and after the satellite reconstruction simulation, it can be concluded that the orbital manoeuvring can effectively improve the observation probability and observation duration of the target at a certain speed. The orbital manoeuvre model created in this paper provides a certain methodical support for the tracking problem of moving targets at sea.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810103","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In addressing the challenge of tracking moving targets at sea, our focus has been directed towards the development of a reconstruction methodology founded upon satellite orbital manoeuvres. This endeavour has led us to devise a predictive model for manoeuvres within a geographic coordinate system, alongside the creation of a three-phase orbital manoeuvre model. A Non-dominant Sorting Adaptive Memetic (NSAM) algorithm is proposed in this paper, which is a two-layer multi-objective optimization algorithm that retains the advantages of evolutionary algorithms based on the population’s evolution and has an excellent local optimization ability of local search algorithms. The proposed algorithm can be used to solve multi-objective optimization problems. By comparing the target observation results before and after the satellite reconstruction simulation, it can be concluded that the orbital manoeuvring can effectively improve the observation probability and observation duration of the target at a certain speed. The orbital manoeuvre model created in this paper provides a certain methodical support for the tracking problem of moving targets at sea.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于海上运动目标跟踪的天基探测卫星星座重构方法研究
在应对跟踪海上移动目标的挑战时,我们的重点是开发一种基于卫星轨道机动的重建方法。这一努力使我们设计了一个地理坐标系内机动的预测模型,同时创建了一个三阶段轨道机动模型。本文提出了一种非显性排序自适应记忆(NSAM)算法,它是一种两层多目标优化算法,保留了基于种群进化的进化算法的优点,并具有优异的局部搜索算法的局部优化能力。该算法可用于求解多目标优化问题。通过比较卫星重建模拟前后的目标观测结果,可以得出结论,轨道机动可以在一定速度下有效提高目标的观测概率和观测持续时间。本文建立的轨道机动模型为海上运动目标的跟踪问题提供了一定的系统支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. Study on Shear Resistance and Structural Performance of Corrugated Steel–Concrete Composite Deck Clustering Analysis of Wind Turbine Alarm Sequences Based on Domain Knowledge-Fused Word2vec Unraveling Functional Dysphagia: A Game-Changing Automated Machine-Learning Diagnostic Approach Spatial Overlay Analysis of Geochemical Singularity Index α-Value of Porphyry Cu Deposit in Gangdese Metallogenic Belt, Tibet, Western China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1