{"title":"Pseudostarlike and pseudoconvex in a direction multiple Dirichlet series","authors":"M. Sheremeta, O. Skaskiv","doi":"10.30970/ms.58.2.182-200","DOIUrl":null,"url":null,"abstract":"The article introduces the concepts of pseudostarlikeness and pseudoconvexity in the direction of absolutely converges in $\\Pi_0=\\{s\\in\\mathbb{C}^p\\colon \\text{Re}\\,s<0\\}$, $p\\in\\mathbb{N},$ the multiple Dirichlet series of the form$$ F(s)=e^{(h,s)}+\\sum\\nolimits_{\\|(n)\\|=\\|(n^0)\\|}^{+\\infty}f_{(n)}\\exp\\{(\\lambda_{(n)},s)\\}, \\quad s=(s_1,...,s_p)\\in {\\mathbb C}^p,\\quad p\\geq 1,$$where $ \\lambda_{(n^0)}>h$, $\\text{Re}\\,s<0\\Longleftrightarrow (\\text{Re}\\,s_1<0,...,\\text{Re}\\,s_p<0)$,$h=(h_1,...,h_p)\\in {\\mathbb R}^p_+$, $(n)=(n_1,...,n_p)\\in {\\mathbb N}^p$, $(n^0)=(n^0_1,...,n^0_p)\\in {\\mathbb N}^p$, $\\|(n)\\|=n_1+...+n_p$ and the sequences$\\lambda_{(n)}=(\\lambda^{(1)}_{n_1},...,\\lambda^{(p)}_{n_p})$ are such that $0c$ if $a_j\\ge c_j$ for all $1\\le j\\le p$ and there exists at least one $j$ such that $a_j> c_j$. Let ${\\bf b}=(b_1,...,b_p)$ and $\\partial_{{\\bf b}}F( {s})=\\sum\\limits_{j=1}^p b_j\\dfrac{\\partial F( {s})}{\\partial {s}_j}$ be the derivative of $F$ in the direction ${\\bf b}$. In this paper, in particular, the following assertions were obtained: 1) If ${\\bf b}>0$ and$\\sum\\limits_{\\|(n)\\|=k_0}^{+\\infty}(\\lambda_{(n)},{\\bf b})|f_{(n)}|\\le (h,{\\bf b})$then $\\partial_{{\\bf b}}F( {s})\\not=0$ in $\\Pi_0:=\\{s\\colon \\text{Re}\\,s<0\\}$, i.e. $F$ is conformal in $\\Pi_0$ in the direction ${\\bf b}$ (Proposition 1).2) We say that function $F$ is pseudostarlike of the order $\\alpha\\in [0,\\,(h,{\\bf b}))$ and the type$\\beta >0$ in the direction ${\\bf b}$ if$\\Big|\\frac{\\partial_{{\\bf b}}F( {s})}{F(s)}-(h, {\\bf b})\\Big|<\\beta\\Big|\\frac{\\partial_{{\\bf b}}F( {s})}{F(s)}-(2\\alpha-(h, {\\bf b}))\\Big|,\\quad s\\in \\Pi_0.$Let $0\\le \\alpha<(h,{\\bf b})$ and $\\beta>0$. In order that the function $F$ ispseudostarlike of the order $\\alpha$ and the type $\\beta$ in the direction ${\\bf b}> 0$, it is sufficient and in the case, when all $f_{(n)}\\le 0$, it is necessary that$\\sum\\limits_{\\|(n)\\|=k_0}^{+\\infty}\\{((1+\\beta)\\lambda_{(n)}-(1-\\beta)h,{\\bf b})-2\\beta\\alpha\\}|f_{(n)}|\\le 2\\beta ((h,{\\bf b})-\\alpha)$ (Theorem 1).","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.2.182-200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
The article introduces the concepts of pseudostarlikeness and pseudoconvexity in the direction of absolutely converges in $\Pi_0=\{s\in\mathbb{C}^p\colon \text{Re}\,s<0\}$, $p\in\mathbb{N},$ the multiple Dirichlet series of the form$$ F(s)=e^{(h,s)}+\sum\nolimits_{\|(n)\|=\|(n^0)\|}^{+\infty}f_{(n)}\exp\{(\lambda_{(n)},s)\}, \quad s=(s_1,...,s_p)\in {\mathbb C}^p,\quad p\geq 1,$$where $ \lambda_{(n^0)}>h$, $\text{Re}\,s<0\Longleftrightarrow (\text{Re}\,s_1<0,...,\text{Re}\,s_p<0)$,$h=(h_1,...,h_p)\in {\mathbb R}^p_+$, $(n)=(n_1,...,n_p)\in {\mathbb N}^p$, $(n^0)=(n^0_1,...,n^0_p)\in {\mathbb N}^p$, $\|(n)\|=n_1+...+n_p$ and the sequences$\lambda_{(n)}=(\lambda^{(1)}_{n_1},...,\lambda^{(p)}_{n_p})$ are such that $0c$ if $a_j\ge c_j$ for all $1\le j\le p$ and there exists at least one $j$ such that $a_j> c_j$. Let ${\bf b}=(b_1,...,b_p)$ and $\partial_{{\bf b}}F( {s})=\sum\limits_{j=1}^p b_j\dfrac{\partial F( {s})}{\partial {s}_j}$ be the derivative of $F$ in the direction ${\bf b}$. In this paper, in particular, the following assertions were obtained: 1) If ${\bf b}>0$ and$\sum\limits_{\|(n)\|=k_0}^{+\infty}(\lambda_{(n)},{\bf b})|f_{(n)}|\le (h,{\bf b})$then $\partial_{{\bf b}}F( {s})\not=0$ in $\Pi_0:=\{s\colon \text{Re}\,s<0\}$, i.e. $F$ is conformal in $\Pi_0$ in the direction ${\bf b}$ (Proposition 1).2) We say that function $F$ is pseudostarlike of the order $\alpha\in [0,\,(h,{\bf b}))$ and the type$\beta >0$ in the direction ${\bf b}$ if$\Big|\frac{\partial_{{\bf b}}F( {s})}{F(s)}-(h, {\bf b})\Big|<\beta\Big|\frac{\partial_{{\bf b}}F( {s})}{F(s)}-(2\alpha-(h, {\bf b}))\Big|,\quad s\in \Pi_0.$Let $0\le \alpha<(h,{\bf b})$ and $\beta>0$. In order that the function $F$ ispseudostarlike of the order $\alpha$ and the type $\beta$ in the direction ${\bf b}> 0$, it is sufficient and in the case, when all $f_{(n)}\le 0$, it is necessary that$\sum\limits_{\|(n)\|=k_0}^{+\infty}\{((1+\beta)\lambda_{(n)}-(1-\beta)h,{\bf b})-2\beta\alpha\}|f_{(n)}|\le 2\beta ((h,{\bf b})-\alpha)$ (Theorem 1).