Comparative effects of water potential stress induced by salt, alkali and drought on photosynthetic electron transport and apparatus in Hordeum jubatum seedlings
C. Shi, Yanrong Fu, Yuqian Guo, Yuwen Ma, Shuxin Li, Jixiang Lin, Jinghong Wang
{"title":"Comparative effects of water potential stress induced by salt, alkali and drought on photosynthetic electron transport and apparatus in Hordeum jubatum seedlings","authors":"C. Shi, Yanrong Fu, Yuqian Guo, Yuwen Ma, Shuxin Li, Jixiang Lin, Jinghong Wang","doi":"10.1071/CP22202","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context. Photosynthetic electron transport and apparatus are highly susceptible to abiotic stressors during photosynthesis. Hordeum jubatum L. is an ornamental grass with excellent salt tolerance, used for soil improvement and ecological restoration in Northeast China. However, the comparative effects of salt, alkali and drought conditions on the photosynthetic apparatus of H. jubatum under uniform water potential are little known. Aims. We explored the photosynthetic response of H. jubatum to uniform levels of water potential stress induced by three different stressors: salt, alkali and drought. Methods. Seedlings of H. jubatum were irrigated with three concentrations of NaCl, NaHCO3 and PEG-6000 to induce water potentials of −0.21, −0.47 and −0.82 MPa. Transient fluorescence of chlorophyll a in the seedlings was measured, and JIP-test parameters were obtained. Key results. Lower values of J–I phase fluorescence intensity and appearance of a K-band under stress treatments indicated restricted electron transfer from the oxygen-evolving complex in the donor of photosystem II. In addition, the values of ΔI-band and parameters MO and N increased, whereas those of Sm, ϕEo and ψO decreased, indicating interruption of electron flow between electron acceptors pheophytin and NADP+. Serious adverse effects of alkali stress on the acceptors were observed; the low water potential induced by NaHCO3 damaged the thylakoid membrane on the chloroplast, resulting in increased degradation of D1 protein. Conclusions. The results suggest that H. jubatum seedlings have greater tolerance to salt and drought stress, but are highly sensitive to alkali stress in the photosynthetic system. Implications. This study provides physiological information for the successful cultivation of H. jubatum under adverse environment conditions.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/CP22202","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Context. Photosynthetic electron transport and apparatus are highly susceptible to abiotic stressors during photosynthesis. Hordeum jubatum L. is an ornamental grass with excellent salt tolerance, used for soil improvement and ecological restoration in Northeast China. However, the comparative effects of salt, alkali and drought conditions on the photosynthetic apparatus of H. jubatum under uniform water potential are little known. Aims. We explored the photosynthetic response of H. jubatum to uniform levels of water potential stress induced by three different stressors: salt, alkali and drought. Methods. Seedlings of H. jubatum were irrigated with three concentrations of NaCl, NaHCO3 and PEG-6000 to induce water potentials of −0.21, −0.47 and −0.82 MPa. Transient fluorescence of chlorophyll a in the seedlings was measured, and JIP-test parameters were obtained. Key results. Lower values of J–I phase fluorescence intensity and appearance of a K-band under stress treatments indicated restricted electron transfer from the oxygen-evolving complex in the donor of photosystem II. In addition, the values of ΔI-band and parameters MO and N increased, whereas those of Sm, ϕEo and ψO decreased, indicating interruption of electron flow between electron acceptors pheophytin and NADP+. Serious adverse effects of alkali stress on the acceptors were observed; the low water potential induced by NaHCO3 damaged the thylakoid membrane on the chloroplast, resulting in increased degradation of D1 protein. Conclusions. The results suggest that H. jubatum seedlings have greater tolerance to salt and drought stress, but are highly sensitive to alkali stress in the photosynthetic system. Implications. This study provides physiological information for the successful cultivation of H. jubatum under adverse environment conditions.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.