RMX/PIccc: An Extended Person–Item Map and a Unified IRT Output for eRm, psychotools, ltm, mirt, and TAM

Psych Pub Date : 2023-09-05 DOI:10.3390/psych5030062
Milica Kabic, Rainer W. Alexandrowicz
{"title":"RMX/PIccc: An Extended Person–Item Map and a Unified IRT Output for eRm, psychotools, ltm, mirt, and TAM","authors":"Milica Kabic, Rainer W. Alexandrowicz","doi":"10.3390/psych5030062","DOIUrl":null,"url":null,"abstract":"A constituting feature of item response models is that item and person parameters share a latent scale and are therefore comparable. The Person–Item Map is a useful graphical tool to visualize the alignment of the two parameter sets. However, the “classical” variant has some shortcomings, which are overcome by the new RMX package (Rasch models—eXtended). The package provides the RMX::plotPIccc() function, which creates an extended version of the classical PI Map, termed “PIccc”. It juxtaposes the person parameter distribution to various item-related functions, like category and item characteristic curves and category, item, and test information curves. The function supports many item response models and processes the return objects of five major R packages for IRT analysis. It returns the used parameters in a unified form, thus allowing for their further processing.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5030062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A constituting feature of item response models is that item and person parameters share a latent scale and are therefore comparable. The Person–Item Map is a useful graphical tool to visualize the alignment of the two parameter sets. However, the “classical” variant has some shortcomings, which are overcome by the new RMX package (Rasch models—eXtended). The package provides the RMX::plotPIccc() function, which creates an extended version of the classical PI Map, termed “PIccc”. It juxtaposes the person parameter distribution to various item-related functions, like category and item characteristic curves and category, item, and test information curves. The function supports many item response models and processes the return objects of five major R packages for IRT analysis. It returns the used parameters in a unified form, thus allowing for their further processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RMX/PIccc: eRm、psychotools、ltm、mirt和TAM的扩展的人-项目图和统一的IRT输出
项目反应模型的一个组成特征是,项目和个人参数共享一个潜在的量表,因此具有可比性。人员-项目映射是一个有用的图形工具,可以可视化两个参数集的对齐情况。然而,“经典”变体有一些缺点,这些缺点被新的RMX包(Rasch模型——扩展)所克服。该包提供了RMX::plotPIccc()函数,该函数创建了一个名为“PIccc”的经典PI映射的扩展版本。它将个人参数分布与各种项目相关函数并置,如类别和项目特征曲线以及类别、项目和测试信息曲线。该函数支持许多项目响应模型,并处理五个主要R包的返回对象以进行IRT分析。它以统一的形式返回所使用的参数,从而允许对其进行进一步处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks Qualitative Pilot Interventions for the Enhancement of Mental Health Support in Doctoral Students Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis The IADC Grief Questionnaire as a Brief Measure for Complicated Grief in Clinical Practice and Research: A Preliminary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1