{"title":"Biosynthesis of Silver Nanoparticles from Allium ampeloprasum Leaves Extract and Its Antifungal Activity","authors":"Samiyah Saeed Al-Zahrani, S. Al-Garni","doi":"10.4236/JBNB.2019.101002","DOIUrl":null,"url":null,"abstract":"Development of natural based nanomaterial immense interest of researchers involved in eco-friendly biosynthesis of nanoparticles. This research set out to investigate the potential of Allium ampeloprasum leaves extract to synthesize silver nanoparticles (AgNPs), and evaluate their antifungal activity against some toxigenic strains of Aspergillus isolates. In order to achieve this, AgNPs were prepared using plant extracts at room temperature and the formation of AgNPs was visually detected after the color changed to dark brown within few minutes. The biosynthesized AgNPs were characterized using the UV-vis spectroscopy, which confirmed the formation of AgNPs with a maximum peak at 437 nm due to the Plasmon resonance. The main active reduction agents were detected by Fourier Transmission infrared spectroscopy (FTIR). Also, the nanoparticles were characterized using Scanning electron microscope (SEM). The antifungal activity of AgNPs was investigated by agar well diffusion method, which revealed inhibition zones of 8 mm, 10 mm, 11 mm, 11 mm and 14 mm against Aspergillus flavus 1, A. parasiticus, A. flavus 2, A. ochraceus, and A. niger. The minimum inhibition concentration (MIC) was determined using micro broth dilution method. MIC values of AgNPs ranged from 652 - 2500 μg/ml. The fungi treated with AgNPs, were examined with (SEM), it was observed that the treated fungi were damaged. These results suggest that AgNPs have the potential to be used as an ideal eco-friendly approach to control toxigenic fungi.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JBNB.2019.101002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Development of natural based nanomaterial immense interest of researchers involved in eco-friendly biosynthesis of nanoparticles. This research set out to investigate the potential of Allium ampeloprasum leaves extract to synthesize silver nanoparticles (AgNPs), and evaluate their antifungal activity against some toxigenic strains of Aspergillus isolates. In order to achieve this, AgNPs were prepared using plant extracts at room temperature and the formation of AgNPs was visually detected after the color changed to dark brown within few minutes. The biosynthesized AgNPs were characterized using the UV-vis spectroscopy, which confirmed the formation of AgNPs with a maximum peak at 437 nm due to the Plasmon resonance. The main active reduction agents were detected by Fourier Transmission infrared spectroscopy (FTIR). Also, the nanoparticles were characterized using Scanning electron microscope (SEM). The antifungal activity of AgNPs was investigated by agar well diffusion method, which revealed inhibition zones of 8 mm, 10 mm, 11 mm, 11 mm and 14 mm against Aspergillus flavus 1, A. parasiticus, A. flavus 2, A. ochraceus, and A. niger. The minimum inhibition concentration (MIC) was determined using micro broth dilution method. MIC values of AgNPs ranged from 652 - 2500 μg/ml. The fungi treated with AgNPs, were examined with (SEM), it was observed that the treated fungi were damaged. These results suggest that AgNPs have the potential to be used as an ideal eco-friendly approach to control toxigenic fungi.