Combining finite element space-discretizations with symplectic time-marching schemes for linear Hamiltonian systems

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Frontiers in Applied Mathematics and Statistics Pub Date : 2023-04-05 DOI:10.3389/fams.2023.1165371
Bernardo Cockburn, Shukai Du, M. Sánchez
{"title":"Combining finite element space-discretizations with symplectic time-marching schemes for linear Hamiltonian systems","authors":"Bernardo Cockburn, Shukai Du, M. Sánchez","doi":"10.3389/fams.2023.1165371","DOIUrl":null,"url":null,"abstract":"We provide a short introduction to the devising of a special type of methods for numerically approximating the solution of Hamiltonian partial differential equations. These methods use Galerkin space-discretizations which result in a system of ODEs displaying a discrete version of the Hamiltonian structure of the original system. The resulting system of ODEs is then discretized by a symplectic time-marching method. This combination results in high-order accurate, fully discrete methods which can preserve the invariants of the Hamiltonian defining the ODE system. We restrict our attention to linear Hamiltonian systems, as the main results can be obtained easily and directly, and are applicable to many Hamiltonian systems of practical interest including acoustics, elastodynamics, and electromagnetism. After a brief description of the Hamiltonian systems of our interest, we provide a brief introduction to symplectic time-marching methods for linear systems of ODEs which does not require any background on the subject. We describe then the case in which finite-difference space-discretizations are used and focus on the popular Yee scheme (1966) for electromagnetism. Finally, we consider the case of finite-element space discretizations. The emphasis is placed on the conservation properties of the fully discrete schemes. We end by describing ongoing work.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1165371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a short introduction to the devising of a special type of methods for numerically approximating the solution of Hamiltonian partial differential equations. These methods use Galerkin space-discretizations which result in a system of ODEs displaying a discrete version of the Hamiltonian structure of the original system. The resulting system of ODEs is then discretized by a symplectic time-marching method. This combination results in high-order accurate, fully discrete methods which can preserve the invariants of the Hamiltonian defining the ODE system. We restrict our attention to linear Hamiltonian systems, as the main results can be obtained easily and directly, and are applicable to many Hamiltonian systems of practical interest including acoustics, elastodynamics, and electromagnetism. After a brief description of the Hamiltonian systems of our interest, we provide a brief introduction to symplectic time-marching methods for linear systems of ODEs which does not require any background on the subject. We describe then the case in which finite-difference space-discretizations are used and focus on the popular Yee scheme (1966) for electromagnetism. Finally, we consider the case of finite-element space discretizations. The emphasis is placed on the conservation properties of the fully discrete schemes. We end by describing ongoing work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性哈密顿系统的有限元空间离散与辛时间推进格式的结合
我们简要介绍了一种特殊类型的方法的设计,用于数值逼近哈密顿偏微分方程的解。这些方法使用Galerkin空间离散化,这导致ODE系统显示原始系统的哈密顿结构的离散版本。然后用辛时间推进法对所得的常微分方程组进行离散化。这种组合产生了高阶精确、完全离散的方法,可以保留定义ODE系统的哈密顿量的不变量。我们将注意力局限于线性哈密顿系统,因为主要结果可以简单直接地获得,并且适用于许多实际感兴趣的哈密顿系统,包括声学、弹性动力学和电磁学。在简要描述了我们感兴趣的哈密顿系统之后,我们简要介绍了常微分方程线性系统的辛时间推进方法,该方法不需要任何背景知识。然后,我们描述了使用有限差分空间离散化的情况,并重点介绍了流行的电磁学Yee格式(1966)。最后,我们考虑了有限元空间离散化的情况。重点讨论了完全离散格式的守恒性质。我们最后描述正在进行的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
期刊最新文献
Third-degree B-spline collocation method for singularly perturbed time delay parabolic problem with two parameters Item response theory to discriminate COVID-19 knowledge and attitudes among university students Editorial: Justified modeling frameworks and novel interpretations of ecological and epidemiological systems Pneumonia and COVID-19 co-infection modeling with optimal control analysis Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1