{"title":"Supramolecular Tools for the Stabilisation of Blue-Phase Liquid Crystals","authors":"F. Kraus, M. Giese","doi":"10.1055/s-0042-1757971","DOIUrl":null,"url":null,"abstract":"Blue phases (BPs), a unique manifestation of chirality in the liquid crystalline state, have gained considerable attention due to the unusual combination of properties such as sub-millisecond response times to electrical fields and Bragg reflection of circularly polarised light. Initially they were regarded as promising materials for the development of the next-level display technologies. However, in recent years, they have gained increasing attention as responsive photonic materials with sensing or optoelectronics properties (photonic mirrors and filters). A major limitation so far has been their narrow temperature range in which they usually exist. The aim of the present review is to summarise the recent efforts made to stabilise BPs by employing specific non-covalent bonds and the principles of supramolecular chemistry.1 Introduction2 Stabilisation of Blue Phases by Supramolecular Methods2.1 Doping Approach2.2 Design Approach3 Conclusions and Outlook","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"4 1","pages":"190 - 203"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1757971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Blue phases (BPs), a unique manifestation of chirality in the liquid crystalline state, have gained considerable attention due to the unusual combination of properties such as sub-millisecond response times to electrical fields and Bragg reflection of circularly polarised light. Initially they were regarded as promising materials for the development of the next-level display technologies. However, in recent years, they have gained increasing attention as responsive photonic materials with sensing or optoelectronics properties (photonic mirrors and filters). A major limitation so far has been their narrow temperature range in which they usually exist. The aim of the present review is to summarise the recent efforts made to stabilise BPs by employing specific non-covalent bonds and the principles of supramolecular chemistry.1 Introduction2 Stabilisation of Blue Phases by Supramolecular Methods2.1 Doping Approach2.2 Design Approach3 Conclusions and Outlook