Experimental Verification on Steering Flight of Honeybee by Electrical Stimulation

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-07-21 DOI:10.34133/2022/9895837
Li Yu, Jieliang Zhao, Zhiyun Ma, Wenzhong Wang, Shaoze Yan, Yue Jin, Yu Fang
{"title":"Experimental Verification on Steering Flight of Honeybee by Electrical Stimulation","authors":"Li Yu, Jieliang Zhao, Zhiyun Ma, Wenzhong Wang, Shaoze Yan, Yue Jin, Yu Fang","doi":"10.34133/2022/9895837","DOIUrl":null,"url":null,"abstract":"The artificial locomotion control strategy is the fundamental technique to ensure the accomplishment of the preset assignments for cyborg insects. The existing research has recognized that the electrical stimulation applied to the optic lobes was an appropriate flight control strategy for small insects represented by honeybee. This control technique has been confirmed to be effective for honeybee flight initiation and cessation. However, its regulation effect on steering locomotion has not been fully verified. Here, we investigated the steering control effect of honeybee by applying electrical stimulation signals with different duty cycles and frequencies on the unilateral optic lobes and screened the stimulus parameters with the highest response successful rate. Moreover, we confirmed the effectiveness of steering control by verifying the presence of rotation torque on tethered honeybees and the body orientation change of crawling honeybees. Our study will contribute some reliable parameter references to the motion control of cyborg honeybees.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9895837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

Abstract

The artificial locomotion control strategy is the fundamental technique to ensure the accomplishment of the preset assignments for cyborg insects. The existing research has recognized that the electrical stimulation applied to the optic lobes was an appropriate flight control strategy for small insects represented by honeybee. This control technique has been confirmed to be effective for honeybee flight initiation and cessation. However, its regulation effect on steering locomotion has not been fully verified. Here, we investigated the steering control effect of honeybee by applying electrical stimulation signals with different duty cycles and frequencies on the unilateral optic lobes and screened the stimulus parameters with the highest response successful rate. Moreover, we confirmed the effectiveness of steering control by verifying the presence of rotation torque on tethered honeybees and the body orientation change of crawling honeybees. Our study will contribute some reliable parameter references to the motion control of cyborg honeybees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电刺激控制蜜蜂飞行的实验验证
人工运动控制策略是保证机器人昆虫完成预设任务的基本技术。现有研究已经认识到,对以蜜蜂为代表的小昆虫来说,对视叶进行电刺激是一种合适的飞行控制策略。这种控制技术已被证实对蜜蜂飞行的开始和停止是有效的。然而,其对转向运动的调节作用尚未得到充分验证。在这里,我们通过对单侧视叶施加不同占空比和频率的电刺激信号来研究蜜蜂的转向控制效果,并筛选出响应成功率最高的刺激参数。此外,我们通过验证系留蜜蜂的旋转扭矩和爬行蜜蜂的身体方向变化,证实了转向控制的有效性。我们的研究将为半机械人蜜蜂的运动控制提供一些可靠的参数参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism. Federated Abnormal Heart Sound Detection with Weak to No Labels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1