Qing Yin, Linda Zhong, Yunya Song, Liang Bai, Zhihua Wang, Chen Li, Yida Xu, Xian Yang
{"title":"A decision support system in precision medicine: contrastive multimodal learning for patient stratification","authors":"Qing Yin, Linda Zhong, Yunya Song, Liang Bai, Zhihua Wang, Chen Li, Yida Xu, Xian Yang","doi":"10.1007/s10479-023-05545-6","DOIUrl":null,"url":null,"abstract":"<div><p>Precision medicine aims to provide personalized healthcare for patients by stratifying them into subgroups based on their health conditions, enabling the development of tailored medical management. Various decision support systems (DSSs) are increasingly developed in this field, where the performance is limited to their capability of handling big amounts of heterogeneous and high-dimensional electronic health records (EHRs). In this paper, we focus on developing a deep learning model for patient stratification that can identify and explain patient subgroups from multimodal EHRs. The primary challenge is to effectively align and unify heterogeneous information from various modalities, which includes both unstructured and structured data. Here, we develop a <b>Con</b>trastive <b>M</b>ultimodal learning model for <b>EHR</b> (ConMEHR) based on topic modelling. In ConMEHR, modality-level and topic-level contrastive learning (CL) mechanisms are adopted to obtain a unified representation space and diversify patient subgroups, respectively. The performance of ConMEHR will be evaluated on two real-world EHR datasets and the results show that our model outperforms other baseline methods.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"348 1","pages":"579 - 607"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-023-05545-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-023-05545-6","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Precision medicine aims to provide personalized healthcare for patients by stratifying them into subgroups based on their health conditions, enabling the development of tailored medical management. Various decision support systems (DSSs) are increasingly developed in this field, where the performance is limited to their capability of handling big amounts of heterogeneous and high-dimensional electronic health records (EHRs). In this paper, we focus on developing a deep learning model for patient stratification that can identify and explain patient subgroups from multimodal EHRs. The primary challenge is to effectively align and unify heterogeneous information from various modalities, which includes both unstructured and structured data. Here, we develop a Contrastive Multimodal learning model for EHR (ConMEHR) based on topic modelling. In ConMEHR, modality-level and topic-level contrastive learning (CL) mechanisms are adopted to obtain a unified representation space and diversify patient subgroups, respectively. The performance of ConMEHR will be evaluated on two real-world EHR datasets and the results show that our model outperforms other baseline methods.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.