Xuefang Xu, Huaishuang Shao, Ruixiong Li, Mei Lin, Peiming Shi
{"title":"Investigation on turbulent characteristic of crossflow under suction in a T-junction using Holo-Hilbert spectral analysis","authors":"Xuefang Xu, Huaishuang Shao, Ruixiong Li, Mei Lin, Peiming Shi","doi":"10.1080/14685248.2021.2009842","DOIUrl":null,"url":null,"abstract":"To investigate the crossflow of ventilation in high-speed train, a T-junction experimental setup is built and velocity data of crossflow under different conditions and positions are measured. Specifically, the conditions include the different velocities of crossflow and different intensities of suction, and the positions include upstream, mid-centre, and downstream. To give full information of the crossflow characteristics, the Holo-Hilbert spectral analysis (HHSA) method is used to analyse these velocity data. The results show that the components of frequency modulation (FM) and amplitude modulation (AM) can be found in the crossflow suffered from the suction. Furthermore, there exists an obvious difference between the crossflow with and without vanes. The crossflow without vanes has more components of FM modulation and AM modulation with high frequency. The increase of the velocity and velocity ratio both can influence the turbulent characteristics of crossflow, which presents high energy with a higher frequency of AM and FM. The crossflow at the upstream and the downstream has similar components presented in the AM–FM spectrum, while the crossflow at the mid-centre has more high-frequency components. In addition, the turbulent intensity at the mid-centre is inversely proportional to the distance from the suction.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"23 1","pages":"29 - 51"},"PeriodicalIF":1.5000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.2009842","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
To investigate the crossflow of ventilation in high-speed train, a T-junction experimental setup is built and velocity data of crossflow under different conditions and positions are measured. Specifically, the conditions include the different velocities of crossflow and different intensities of suction, and the positions include upstream, mid-centre, and downstream. To give full information of the crossflow characteristics, the Holo-Hilbert spectral analysis (HHSA) method is used to analyse these velocity data. The results show that the components of frequency modulation (FM) and amplitude modulation (AM) can be found in the crossflow suffered from the suction. Furthermore, there exists an obvious difference between the crossflow with and without vanes. The crossflow without vanes has more components of FM modulation and AM modulation with high frequency. The increase of the velocity and velocity ratio both can influence the turbulent characteristics of crossflow, which presents high energy with a higher frequency of AM and FM. The crossflow at the upstream and the downstream has similar components presented in the AM–FM spectrum, while the crossflow at the mid-centre has more high-frequency components. In addition, the turbulent intensity at the mid-centre is inversely proportional to the distance from the suction.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.