Ecosystem-based adaptation to climate change through residential urban green structures: co-benefits to thermal comfort, biodiversity, carbon storage and social interaction
{"title":"Ecosystem-based adaptation to climate change through residential urban green structures: co-benefits to thermal comfort, biodiversity, carbon storage and social interaction","authors":"Katja Schmidt, A. Walz","doi":"10.3897/oneeco.6.e65706","DOIUrl":null,"url":null,"abstract":"Climate change adaptation is essential to mitigate risks, such as extreme weather events triggered by global warming and amplified in dense urban environments. Ecosystem-based adaptation measures, such as urban greening, are promoted in cities because of their flexibility and their positive side effects, such as human health benefits, ecological effects, climate mitigation and a range of social benefits. While individual co-benefits of greening measures are well studied, often in public green spaces, few studies quantify co-benefits comprehensively, leaving social benefits particularly understudied. In this study, we perform biophysical and socio-cultural assessments of co-benefits provided by semi-public, residential greening in four courtyards with varying green structures. We quantify effects on thermal comfort, biodiversity, carbon storage and social interaction. We further assess the importance of these co-benefits to people in the neighbourhood. Subsequently, we weight the results from the biophysical assessments with the socio-cultural values to evaluate how even small differences in green structures result in differences in the provision of co-benefits. Results show that, despite relatively small differences in green structures, the residential courtyards with a higher green volume clearly generate more co-benefits than the residential yards with less green, particularly for thermal comfort. Despite differences in the valuation of co-benefits in the neighbourhood, socio-cultural weights did not change the outcome of the comparative assessment. Our results highlight that a deliberate management strategy, possibly on neighbourhood-scale, could enhance co-benefits and contribute to a more sustainable urban development.","PeriodicalId":36908,"journal":{"name":"One Ecosystem","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Ecosystem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/oneeco.6.e65706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Climate change adaptation is essential to mitigate risks, such as extreme weather events triggered by global warming and amplified in dense urban environments. Ecosystem-based adaptation measures, such as urban greening, are promoted in cities because of their flexibility and their positive side effects, such as human health benefits, ecological effects, climate mitigation and a range of social benefits. While individual co-benefits of greening measures are well studied, often in public green spaces, few studies quantify co-benefits comprehensively, leaving social benefits particularly understudied. In this study, we perform biophysical and socio-cultural assessments of co-benefits provided by semi-public, residential greening in four courtyards with varying green structures. We quantify effects on thermal comfort, biodiversity, carbon storage and social interaction. We further assess the importance of these co-benefits to people in the neighbourhood. Subsequently, we weight the results from the biophysical assessments with the socio-cultural values to evaluate how even small differences in green structures result in differences in the provision of co-benefits. Results show that, despite relatively small differences in green structures, the residential courtyards with a higher green volume clearly generate more co-benefits than the residential yards with less green, particularly for thermal comfort. Despite differences in the valuation of co-benefits in the neighbourhood, socio-cultural weights did not change the outcome of the comparative assessment. Our results highlight that a deliberate management strategy, possibly on neighbourhood-scale, could enhance co-benefits and contribute to a more sustainable urban development.