Blood flow transport with electrokinetic flow technique through a narrow semicircle shape within the vertical 2D asymmetrical model

Suwimon Saneewong Na Ayuttaya
{"title":"Blood flow transport with electrokinetic flow technique through a narrow semicircle shape within the vertical 2D asymmetrical model","authors":"Suwimon Saneewong Na Ayuttaya","doi":"10.36963/ijtst.2023100303","DOIUrl":null,"url":null,"abstract":"Within the vertical 2-Dimensional (2D) asymmetrical model, the blood flow transport through a narrow semicircle shape is the numerical study based on the concept of the electrokinetic flow technique. In this study, the blood flow transport has been compared to the electric field, the flow pattern, the pressure field, the vorticity, the temperature field, and the concentration field with and without the electrokinetic flow. The electrical voltage and time are varied from 0 – 20 kV and 0 – 1 s, respectively. The result has shown that the blood flow transport is moved upward within the vertical 2D asymmetrical model and the electric field has not appeared in the case of without the electrokinetic flow. With the electrokinetic flow, the flow pattern, the pressure field, the vorticity field, the temperature field, and the concentration field are not the same pattern as the electric field but they are induced by the electric field. Furthermore, at the center of a narrow semicircle shape, the electric value, the velocity, and the pressure are increased with the electrical voltage increasing but the vorticity and concentration are decreased with the electrical voltage increasing. Finally, the experimental result is compared with the numerical result, it can be seen that simulation results had good agreement with experiment results.","PeriodicalId":36637,"journal":{"name":"International Journal of Thermofluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36963/ijtst.2023100303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Within the vertical 2-Dimensional (2D) asymmetrical model, the blood flow transport through a narrow semicircle shape is the numerical study based on the concept of the electrokinetic flow technique. In this study, the blood flow transport has been compared to the electric field, the flow pattern, the pressure field, the vorticity, the temperature field, and the concentration field with and without the electrokinetic flow. The electrical voltage and time are varied from 0 – 20 kV and 0 – 1 s, respectively. The result has shown that the blood flow transport is moved upward within the vertical 2D asymmetrical model and the electric field has not appeared in the case of without the electrokinetic flow. With the electrokinetic flow, the flow pattern, the pressure field, the vorticity field, the temperature field, and the concentration field are not the same pattern as the electric field but they are induced by the electric field. Furthermore, at the center of a narrow semicircle shape, the electric value, the velocity, and the pressure are increased with the electrical voltage increasing but the vorticity and concentration are decreased with the electrical voltage increasing. Finally, the experimental result is compared with the numerical result, it can be seen that simulation results had good agreement with experiment results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在垂直二维非对称模型中,采用电动流技术通过窄半圆的血流传输
在垂直二维(2D)非对称模型中,血流通过窄半圆的传输是基于电动流技术概念的数值研究。在这项研究中,将血流传输与有无电动流的电场、流型、压力场、涡度、温度场和浓度场进行了比较。电压和时间分别在0–20 kV和0–1 s之间变化。结果表明,在垂直2D不对称模型中,血流传输向上移动,并且在没有电动流的情况下没有出现电场。对于电动流,流型、压力场、涡度场、温度场和浓度场与电场不是相同的模式,而是由电场引起的。此外,在窄半圆形状的中心,电值、速度和压力随着电压的增加而增加,但涡度和浓度随着电压的增大而降低。最后,将实验结果与数值结果进行了比较,可以看出模拟结果与实验结果吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
14
期刊最新文献
Performance analysis of ejector refrigeration cycle with zeotropic mixtures Effect of viscous dissipation on the onset of jeffery fluid porous convection in the presence of throughflow and electric field Thermo-fluidic characteristics of an aerodynamic swirl nozzle with low-concentration nanofluids Evaluation of conventional fluid mechanic theory in small channels with singularity Natural convection of power-law fluid in a horizontal annulus between outer cylinder and inner flat tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1