iTRAQ-based proteomic analysis of rice seedlings’ resistance induced by Streptomyces JD211 against Magnaporthe oryzae

IF 2.6 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Interactions Pub Date : 2022-03-14 DOI:10.1080/17429145.2022.2048106
Lei Wei, Zhengying Shao, Yanhui Fu, Zhang Li, Guorong Ni, Xin Cheng, Yangping Wen, Saijin Wei
{"title":"iTRAQ-based proteomic analysis of rice seedlings’ resistance induced by Streptomyces JD211 against Magnaporthe oryzae","authors":"Lei Wei, Zhengying Shao, Yanhui Fu, Zhang Li, Guorong Ni, Xin Cheng, Yangping Wen, Saijin Wei","doi":"10.1080/17429145.2022.2048106","DOIUrl":null,"url":null,"abstract":"ABSTRACT Streptomyces JD211 induces rice resistance and reduces the disease index of rice blast. However, the key pathways or components involved in the defense mechanism by which antagonistic microorganisms cause resistance have not been elucidated. To better understand the cellular process involved in JD211-induced resistance, the changes of proteomics in the rice treated with JD211 and Magnaporthe oryzae were investigated. Most proteins associated with porphyrin and chlorophyll biosynthesis decreased in M. oryzae-infected rice, whereas these proteins increased in the rice treated with JD211. Proteins increased by JD211 were also involved in the phenylpropanoid pathway, signal transduction, and ascorbate biosynthesis. These results indicated that JD211 could protect rice from M. oryzae damages by promoting signal transduction and inducing the production of phenylpropanoids. JD211 contributed to energy synthesis for defense responses in plants, reduced the damage of M. oryzae, and improved the rice resistance by inducing an array of defense responses more quickly and efficiently in the rice. The obtained data provide not only important information for understanding the molecular mechanism involved in JD211-induced resistance but also application clues for genetic breeding of crops with the improved M. oryzae resistance.","PeriodicalId":16830,"journal":{"name":"Journal of Plant Interactions","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17429145.2022.2048106","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Streptomyces JD211 induces rice resistance and reduces the disease index of rice blast. However, the key pathways or components involved in the defense mechanism by which antagonistic microorganisms cause resistance have not been elucidated. To better understand the cellular process involved in JD211-induced resistance, the changes of proteomics in the rice treated with JD211 and Magnaporthe oryzae were investigated. Most proteins associated with porphyrin and chlorophyll biosynthesis decreased in M. oryzae-infected rice, whereas these proteins increased in the rice treated with JD211. Proteins increased by JD211 were also involved in the phenylpropanoid pathway, signal transduction, and ascorbate biosynthesis. These results indicated that JD211 could protect rice from M. oryzae damages by promoting signal transduction and inducing the production of phenylpropanoids. JD211 contributed to energy synthesis for defense responses in plants, reduced the damage of M. oryzae, and improved the rice resistance by inducing an array of defense responses more quickly and efficiently in the rice. The obtained data provide not only important information for understanding the molecular mechanism involved in JD211-induced resistance but also application clues for genetic breeding of crops with the improved M. oryzae resistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于iTRAQ的JD211链霉菌诱导水稻幼苗对稻瘟病菌抗性的蛋白质组学分析
链霉菌JD211诱导水稻抗稻瘟病,降低稻瘟病的发病指数。然而,拮抗微生物引起耐药性的防御机制中涉及的关键途径或成分尚未阐明。为了更好地了解JD211诱导抗性的细胞过程,研究了JD211和稻瘟病菌处理水稻的蛋白质组学变化。大多数与卟啉和叶绿素生物合成相关的蛋白质在米曲霉感染的水稻中减少,而这些蛋白质在用JD211处理的水稻中增加。JD211增加的蛋白质也参与苯丙烷途径、信号转导和抗坏血酸生物合成。这些结果表明,JD211可以通过促进信号转导和诱导苯丙烷类物质的产生来保护水稻免受米曲霉的损伤。JD211有助于植物防御反应的能量合成,减少米曲霉的危害,并通过在水稻中更快、更有效地诱导一系列防御反应来提高水稻的抗性。所获得的数据不仅为了解JD211诱导抗性的分子机制提供了重要信息,而且为提高米曲霉抗性作物的遗传育种提供了应用线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
6.20%
发文量
69
审稿时长
>12 weeks
期刊介绍: Journal of Plant Interactions aims to represent a common platform for those scientists interested in publishing and reading research articles in the field of plant interactions and will cover most plant interactions with the surrounding environment.
期刊最新文献
Transcriptome analysis of maize resistance to Fusarium verticillioides Biochar modulates the antioxidant system and hormonal signaling in tobacco under continuous-cropping conditions Clarifying the effects of potential evapotranspiration and soil moisture on transpiration in secondary forests of birch in semi-arid regions of China Iron oxide nanoparticles alleviate salt-alkaline stress and improve growth by modulating antioxidant defense system in cherry tomato Root endophytic Phialocephala fortinii and Talaromyces verruculosus enhance growth and affect heavy metal tolerance of Miscanthus sinensis Andersson growing naturally at a mine site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1