Micro-extraction, pre-concentration, and microfluidic-based separation of organophosphate insecticides followed by the miniaturized electrochemical detection system.

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY Bioimpacts Pub Date : 2024-01-01 Epub Date: 2023-10-10 DOI:10.34172/bi.2023.25288
Abdollah Abdollahi Aghdam, Mohsen Chamanara, Reza Laripour, Mohsen Ebrahimi
{"title":"Micro-extraction, pre-concentration, and microfluidic-based separation of organophosphate insecticides followed by the miniaturized electrochemical detection system.","authors":"Abdollah Abdollahi Aghdam, Mohsen Chamanara, Reza Laripour, Mohsen Ebrahimi","doi":"10.34172/bi.2023.25288","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>A new analytical method based on the coupling of microextraction and microfluidics was developed and investigated for the pre-concentration, separation, and electrochemical detection of fenitrothion (FT) and parathion (PA) at the sub-ppm concentrations.</p><p><strong>Methods: </strong>In the first step, the microchip capillary electrophoresis technique was used to serve as a separation and detection system. Analytes were injected in the 40 mm long microchannel with 10 mm sidearms. Then, they were separated by applying a direct electrical field (+1800 V) between the buffer and detection reservoirs. 2-(n-morpholino)ethanesulfonic acid (MES) buffer (20 mM, pH 5) was used as a running buffer. The electrochemical detection was performed using three Pt microelectrodes with the width of working, counter, and reference electrodes (50, 250, and 250 µm, respectively) in the out-channel approach.</p><p><strong>Results: </strong>The system was devised to have the optimum detection potential equal to -1.2 V vs. pseudo-reference electrode. The dimensions of the SU-8 channel have 20 µm depth and 50 µm width. In the second step, an air-assisted liquid-liquid microextraction technique was used to extract and preconcentration of analytes from human blood plasma. Then, 1, 2 di-bromoethan was used as extractant solvent, the analytes were preconcentrated, and the sedimented solvent (50 µL) was evaporated in a 60 ˚C water bath followed by substitution of running buffer containing 10% ethanol. The optimal extraction cycles were found to be 8 with adding 1% NaCl to the aqueous phase. Analyzing time of the mentioned analytes was less than 100s, the precision range was 3.3 - 8.2 with a linear range of 0.8-100 ppm and 1.2-100 ppm for FT and PA, respectively. The extraction recoveries were about 91% and 87% for FT and PA, respectively. The detection limits for FT and PA were 240 and 360 ppb, respectively. Finally, the reliability of the method was investigated by GC-FID.</p><p><strong>Conclusion: </strong>The proposed method and device were validated and can be used as in situ and portable detection systems for detecting fenitrothion and parathion insecticides.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2023.25288","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: A new analytical method based on the coupling of microextraction and microfluidics was developed and investigated for the pre-concentration, separation, and electrochemical detection of fenitrothion (FT) and parathion (PA) at the sub-ppm concentrations.

Methods: In the first step, the microchip capillary electrophoresis technique was used to serve as a separation and detection system. Analytes were injected in the 40 mm long microchannel with 10 mm sidearms. Then, they were separated by applying a direct electrical field (+1800 V) between the buffer and detection reservoirs. 2-(n-morpholino)ethanesulfonic acid (MES) buffer (20 mM, pH 5) was used as a running buffer. The electrochemical detection was performed using three Pt microelectrodes with the width of working, counter, and reference electrodes (50, 250, and 250 µm, respectively) in the out-channel approach.

Results: The system was devised to have the optimum detection potential equal to -1.2 V vs. pseudo-reference electrode. The dimensions of the SU-8 channel have 20 µm depth and 50 µm width. In the second step, an air-assisted liquid-liquid microextraction technique was used to extract and preconcentration of analytes from human blood plasma. Then, 1, 2 di-bromoethan was used as extractant solvent, the analytes were preconcentrated, and the sedimented solvent (50 µL) was evaporated in a 60 ˚C water bath followed by substitution of running buffer containing 10% ethanol. The optimal extraction cycles were found to be 8 with adding 1% NaCl to the aqueous phase. Analyzing time of the mentioned analytes was less than 100s, the precision range was 3.3 - 8.2 with a linear range of 0.8-100 ppm and 1.2-100 ppm for FT and PA, respectively. The extraction recoveries were about 91% and 87% for FT and PA, respectively. The detection limits for FT and PA were 240 and 360 ppb, respectively. Finally, the reliability of the method was investigated by GC-FID.

Conclusion: The proposed method and device were validated and can be used as in situ and portable detection systems for detecting fenitrothion and parathion insecticides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微型化电化学检测系统对有机磷杀虫剂微萃取、预浓缩及微流控分离的影响
摘要:建立了一种基于微萃取和微流体耦合的亚ppm浓度下菲硝硫(FT)和对硫磷(PA)的预富集、分离和电化学检测新方法。方法:第一步采用微芯片毛细管电泳技术作为分离检测系统。将分析物注入40 mm长、10 mm侧臂的微通道中。然后,通过在缓冲层和检测层之间施加直接电场(+1800V)将它们分离。2-(n-morpholino)乙磺酸(MES)缓冲液(20 mM, pH 5)作为运行缓冲液。在输出通道方法中,使用三个Pt微电极进行电化学检测,其宽度分别为工作电极、计数电极和参比电极(分别为50、250和250µm)。结果:与伪ref电极相比,该系统的最佳检测电位为-1.2 V。SU-8通道的尺寸为深度20µm,宽度50µm。第二步,采用气助液-液微萃取技术对人血浆中分析物进行萃取和预富集。然后,以1,2二溴ethan为萃取溶剂,对分析物进行预浓缩,将沉淀溶剂(50µL)在60˚C水浴中蒸发,用含10%乙醇的流动缓冲液置换。在水相中加入1% NaCl时,最佳萃取周期为8次。分析时间小于100s,精密度范围为3.3 ~ 8.2,FT和PA的线性范围分别为0.8 ~ 100 ppm和1.2 ~ 100 ppm。FT和PA的提取回收率分别为91%和87%。FT和PA的检出限分别为240和360 ppb。最后,用GC-FID对方法的可靠性进行了验证。结论:所建立的方法和装置经过验证,可作为非硝硫磷和对硫磷杀虫剂的原位和便携式检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
期刊最新文献
The impact of particle size of nanostructured lipid carriers on follicular drug delivery: A comprehensive analysis of mouse and human hair follicle penetration Association of tumour mutation burden with prognosis and its clinical significance in stage III gastric cancer A comprehensive review on alpha-lipoic acid delivery by nanoparticles Systemic nitric oxide metabolites and the chance of pre-diabetes regression to normoglycemia: A 9-year cohort study A human acellular dermal matrix coated with zinc oxide nanoparticles accelerates tendon repair in patients with hand flexor tendon injuries in zone 5 of the hand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1