Evaluation of liquefaction potential by energy-based and stress-based methods and gene expressing programming (case study: Tabriz city)

Armin Sahebkaram Alamdari, R. Dabiri, R. Jani, Fariba Behrouz Sarand
{"title":"Evaluation of liquefaction potential by energy-based and stress-based methods and gene expressing programming (case study: Tabriz city)","authors":"Armin Sahebkaram Alamdari, R. Dabiri, R. Jani, Fariba Behrouz Sarand","doi":"10.1080/17486025.2022.2096264","DOIUrl":null,"url":null,"abstract":"ABSTRACT Liquefaction in soil layers is a vital factor intensifying earthquake damages.This study compares the numerical evaluation process and the results of two methods based on stress and energy. It is inferred from the calculations that the stress-based method predicts a higher liquefaction potential with a lower safety factor as it promises liquefaction in deeper soil layers. In return, liquefaction tends to occur at a shallower depth with higher intensity in the energy-based method. Through applying the two approaches based on the data collected from different areas around Tabriz, a liquefaction-zoning map is presented. Despite being far from the fault, the central to the western and the southwestern parts of Tabriz has a high liquefaction potential. Eventually, based on the evaluated liquefaction potential using the stated methods and adopting the gene expression programming (GEP) approach, an equation is introduced to estimate the liquefaction potential for the case study. The predictions of the proposed models were consistent with the findings of experimental methods, demonstrating appropriate statistical measures and parametric analysis. It can also be concluded from the results of the parametric analysis, that the parameters of maximum acceleration, earthquake magnitude, and SPT number have more great impact on soil liquefaction.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2022.2096264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Liquefaction in soil layers is a vital factor intensifying earthquake damages.This study compares the numerical evaluation process and the results of two methods based on stress and energy. It is inferred from the calculations that the stress-based method predicts a higher liquefaction potential with a lower safety factor as it promises liquefaction in deeper soil layers. In return, liquefaction tends to occur at a shallower depth with higher intensity in the energy-based method. Through applying the two approaches based on the data collected from different areas around Tabriz, a liquefaction-zoning map is presented. Despite being far from the fault, the central to the western and the southwestern parts of Tabriz has a high liquefaction potential. Eventually, based on the evaluated liquefaction potential using the stated methods and adopting the gene expression programming (GEP) approach, an equation is introduced to estimate the liquefaction potential for the case study. The predictions of the proposed models were consistent with the findings of experimental methods, demonstrating appropriate statistical measures and parametric analysis. It can also be concluded from the results of the parametric analysis, that the parameters of maximum acceleration, earthquake magnitude, and SPT number have more great impact on soil liquefaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于能量、压力和基因表达编程的液化潜力评价(以大不里士市为例)
土层液化是加剧地震灾害的重要因素。本文比较了基于应力和能量的两种方法的数值评价过程和结果。计算结果表明,基于应力的方法具有较高的液化潜力和较低的安全系数,因为它可以在较深的土层中进行液化。反过来,在基于能量的方法中,液化往往发生在较浅的深度和较高的强度。根据大不里士周围不同地区收集的数据,应用这两种方法,绘制了一幅液化分区图。尽管远离断层,但大不里士中部到西部和西南部具有很高的液化潜力。最后,在利用上述方法对液化势进行评估的基础上,采用基因表达编程(GEP)方法,引入了液化势估算方程。所提出模型的预测结果与实验方法的结果一致,表明了适当的统计措施和参数分析。从参数分析结果也可以看出,最大加速度、地震震级、SPT数等参数对土壤液化的影响较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
27
期刊介绍: Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.
期刊最新文献
Analytical evaluation of partially stiffened granular piled raft with the effect of rigidity of bearing stratum A parametric study on deformation behaviour for design of braced excavation in soft clay Effect of leachate and used motor oil on the geotechnical and mechanical characteristics of soils with different mineralogy under different moisture conditions Influence of edge distance on experimental p-y curves for piles near slope Performance of loosely skirted square footing resting on reinforced sand under vertical concentric and eccentric loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1