Jin Yan, Tiansheng Xu, Jing Gao, Ni Li, Guanghong Gong
{"title":"Image-based approximation of derivatives of traditional differential metrics of angular distortion in map projections","authors":"Jin Yan, Tiansheng Xu, Jing Gao, Ni Li, Guanghong Gong","doi":"10.1080/15230406.2022.2127123","DOIUrl":null,"url":null,"abstract":"ABSTRACT Map projections are imaging procedures used to depict geographic features. We adopt the traditional differential metric and exploit the intrinsic image properties of map projections to establish an image-based differential metric for evaluating distortions in map projections, obtaining an effective, practical, and relatively accurate metric. We use bivariate polynomial functions to approximate the forward and inverse formulae of map projections. Thereafter, the proposed metric is conveniently calculated using the partial derivatives of the approximate forward functions based on polynomial functions, while complicated differential calculations are avoided. Moreover, multiple sampling and image filters mitigate the influence of imaging noise and achieve a high computation precision. Experiments were conducted using the NASA G.Projector mapping software to generate images from more than 200 map projections. Explicit equations of map projections were not required owing to the use of the mapping software. These images were then evaluated using the proposed metric through an implementation in the Julia programming language. The corresponding results confirmed that the proposed metric avoided the drawbacks of the great circle arc metric and provided considerably low errors (1.12° on average) and high consistency (0.999 on average) with respect to the traditional differential metric. Although there were errors, experimental results indicated that feasibility and high usability were achieved by the image-based method for evaluating distortions in small-scale map projections.","PeriodicalId":47562,"journal":{"name":"Cartography and Geographic Information Science","volume":"50 1","pages":"44 - 62"},"PeriodicalIF":2.6000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cartography and Geographic Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15230406.2022.2127123","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Map projections are imaging procedures used to depict geographic features. We adopt the traditional differential metric and exploit the intrinsic image properties of map projections to establish an image-based differential metric for evaluating distortions in map projections, obtaining an effective, practical, and relatively accurate metric. We use bivariate polynomial functions to approximate the forward and inverse formulae of map projections. Thereafter, the proposed metric is conveniently calculated using the partial derivatives of the approximate forward functions based on polynomial functions, while complicated differential calculations are avoided. Moreover, multiple sampling and image filters mitigate the influence of imaging noise and achieve a high computation precision. Experiments were conducted using the NASA G.Projector mapping software to generate images from more than 200 map projections. Explicit equations of map projections were not required owing to the use of the mapping software. These images were then evaluated using the proposed metric through an implementation in the Julia programming language. The corresponding results confirmed that the proposed metric avoided the drawbacks of the great circle arc metric and provided considerably low errors (1.12° on average) and high consistency (0.999 on average) with respect to the traditional differential metric. Although there were errors, experimental results indicated that feasibility and high usability were achieved by the image-based method for evaluating distortions in small-scale map projections.
期刊介绍:
Cartography and Geographic Information Science (CaGIS) is the official publication of the Cartography and Geographic Information Society (CaGIS), a member organization of the American Congress on Surveying and Mapping (ACSM). The Cartography and Geographic Information Society supports research, education, and practices that improve the understanding, creation, analysis, and use of maps and geographic information. The society serves as a forum for the exchange of original concepts, techniques, approaches, and experiences by those who design, implement, and use geospatial technologies through the publication of authoritative articles and international papers.