{"title":"Thermodynamic Analysis of a Closed-Cycle Ocean Thermal Energy Conversion Power Plant for Offshore Platforms","authors":"Cüneyt Ezgi","doi":"10.5957/jspd.02220009","DOIUrl":null,"url":null,"abstract":"\n \n The world is currently facing two major challenges: global climate change and sustainable development. Efforts to generate electricity from renewable energy sources continue steadily. In this study, a closed-cycle ocean thermal energy conversion (OTEC) power plant with various working fluids with zero Ozone Depletion Potential (ODP) and per unit mass flow rate for offshore platforms is designed and thermodynamically analyzed using Engineering Equation Solver (EES). The calculated results shows that ammonia (R-717) has the highest electrical performance of 45.51 kW per unit mass flow rate among the studied working fluids for OTEC.\n \n \n \n The world is currently confronted with two major challenges: global climate change and sustainable development. The Paris Agreement entered into force on November 4, 2016, limited global warming to well below 2°C, preferably to 1.5°C, compared to preindustrial levels. According to the Sixth Assessment Report released by Intergovernmental Panel on Climate Change (IPCC) on February 28, 2022, climate change is causing common deterioration in every zone in the world with just 1.1°C of warming. Sustainable solutions for our environment’s future must be produced. Therefore, the power generation efforts from renewable energy sources are going on continuously.\n","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/jspd.02220009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
The world is currently facing two major challenges: global climate change and sustainable development. Efforts to generate electricity from renewable energy sources continue steadily. In this study, a closed-cycle ocean thermal energy conversion (OTEC) power plant with various working fluids with zero Ozone Depletion Potential (ODP) and per unit mass flow rate for offshore platforms is designed and thermodynamically analyzed using Engineering Equation Solver (EES). The calculated results shows that ammonia (R-717) has the highest electrical performance of 45.51 kW per unit mass flow rate among the studied working fluids for OTEC.
The world is currently confronted with two major challenges: global climate change and sustainable development. The Paris Agreement entered into force on November 4, 2016, limited global warming to well below 2°C, preferably to 1.5°C, compared to preindustrial levels. According to the Sixth Assessment Report released by Intergovernmental Panel on Climate Change (IPCC) on February 28, 2022, climate change is causing common deterioration in every zone in the world with just 1.1°C of warming. Sustainable solutions for our environment’s future must be produced. Therefore, the power generation efforts from renewable energy sources are going on continuously.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.