M. González-García, C. Aguirre-Franco, Leslie Vargas-Ramirez, M. Barrero, C. Torres-Duque
{"title":"Effect of pulmonary hypertension on exercise capacity and gas exchange in patients with chronic obstructive pulmonary disease living at high altitude","authors":"M. González-García, C. Aguirre-Franco, Leslie Vargas-Ramirez, M. Barrero, C. Torres-Duque","doi":"10.1177/14799731221104095","DOIUrl":null,"url":null,"abstract":"Background: Pulmonary hypertension (PH) is associated with decreased exercise tolerance in chronic obstructive pulmonary disease (COPD) patients, but in the altitude the response to exercise in those patients is unknown. Our objective was to compare exercise capacity, gas exchange and ventilatory alterations between COPD patients with PH (COPD-PH) and without PH (COPD-nonPH) residents at high altitude (2640 m). Methods: One hundred thirty-two COPD-nonPH, 82 COPD-PH, and 47 controls were included. Dyspnea by Borg scale, oxygen consumption (VO2), work rate (WR), ventilatory equivalents (VE/VCO2), dead space to tidal volume ratio (VD/VT), alveolar-arterial oxygen tension gradient (AaPO2), and arterial-end-tidal carbon dioxide pressure gradient (Pa-ETCO2) were measurement during a cardiopulmonary exercise test. For comparison of variables between groups, Kruskal-Wallis or one-way ANOVA tests were used, and stepwise regression analysis to test the association between PH and exercise capacity. Results: All COPD patients had a lower exercise capacity and higher PaCO2, A-aPO2 and VD/VT than controls. The VO2 % predicted (61.3 ± 20.6 vs 75.3 ± 17.9; p < 0.001) and WR % predicted (65.3 ± 17.9 vs 75.3 ± 17.9; p < 0.001) were lower in COPD-PH than in COPD-nonPH. At peak exercise, dyspnea was higher in COPD-PH (p = 0.011). During exercise, in COPD-PH, the PaO2 was lower (p < 0.001), and AaPO2 (p < 0.001), Pa-ETCO2 (p = 0.033), VE/VCO2 (p = 0.019), and VD/VT (p = 0.007) were higher than in COPD-nonPH. In the multivariate analysis, PH was significantly associated with lower peak VO2 and WR (p < 0.001). Conclusion: In COPD patients residing at high altitude, the presence of PH was an independent factor related to the exercise capacity. Also, in COPD-PH patients there were more dyspnea and alterations in gas exchange during the exercise than in those without PH.","PeriodicalId":10217,"journal":{"name":"Chronic Respiratory Disease","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronic Respiratory Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14799731221104095","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Pulmonary hypertension (PH) is associated with decreased exercise tolerance in chronic obstructive pulmonary disease (COPD) patients, but in the altitude the response to exercise in those patients is unknown. Our objective was to compare exercise capacity, gas exchange and ventilatory alterations between COPD patients with PH (COPD-PH) and without PH (COPD-nonPH) residents at high altitude (2640 m). Methods: One hundred thirty-two COPD-nonPH, 82 COPD-PH, and 47 controls were included. Dyspnea by Borg scale, oxygen consumption (VO2), work rate (WR), ventilatory equivalents (VE/VCO2), dead space to tidal volume ratio (VD/VT), alveolar-arterial oxygen tension gradient (AaPO2), and arterial-end-tidal carbon dioxide pressure gradient (Pa-ETCO2) were measurement during a cardiopulmonary exercise test. For comparison of variables between groups, Kruskal-Wallis or one-way ANOVA tests were used, and stepwise regression analysis to test the association between PH and exercise capacity. Results: All COPD patients had a lower exercise capacity and higher PaCO2, A-aPO2 and VD/VT than controls. The VO2 % predicted (61.3 ± 20.6 vs 75.3 ± 17.9; p < 0.001) and WR % predicted (65.3 ± 17.9 vs 75.3 ± 17.9; p < 0.001) were lower in COPD-PH than in COPD-nonPH. At peak exercise, dyspnea was higher in COPD-PH (p = 0.011). During exercise, in COPD-PH, the PaO2 was lower (p < 0.001), and AaPO2 (p < 0.001), Pa-ETCO2 (p = 0.033), VE/VCO2 (p = 0.019), and VD/VT (p = 0.007) were higher than in COPD-nonPH. In the multivariate analysis, PH was significantly associated with lower peak VO2 and WR (p < 0.001). Conclusion: In COPD patients residing at high altitude, the presence of PH was an independent factor related to the exercise capacity. Also, in COPD-PH patients there were more dyspnea and alterations in gas exchange during the exercise than in those without PH.
期刊介绍:
Chronic Respiratory Disease is a peer-reviewed, open access, scholarly journal, created in response to the rising incidence of chronic respiratory diseases worldwide. It publishes high quality research papers and original articles that have immediate relevance to clinical practice and its multi-disciplinary perspective reflects the nature of modern treatment. The journal provides a high quality, multi-disciplinary focus for the publication of original papers, reviews and commentary in the broad area of chronic respiratory disease, particularly its treatment and management.