Investigation of Synthesis and Deposition Methods for Cesium-Based Perovskite Quantum Dots for Solar Cell Applications

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Eurasian Chemico-Technological Journal Pub Date : 2022-10-10 DOI:10.18321/ectj1437
B. Davletiyarov, K. Akmurzina, A. Seralin, G. Bizhanova, B. Baptayev, M. Balanay, A. Ng
{"title":"Investigation of Synthesis and Deposition Methods for Cesium-Based Perovskite Quantum Dots for Solar Cell Applications","authors":"B. Davletiyarov, K. Akmurzina, A. Seralin, G. Bizhanova, B. Baptayev, M. Balanay, A. Ng","doi":"10.18321/ectj1437","DOIUrl":null,"url":null,"abstract":"The CsPbI2Br perovskite quantum dots (PQDs) have great potential in photovoltaic applications due to their phase stability and optoelectronic properties. In this work, the synthesis technique of CsPbI2Br PQDs with the investigation of their properties and applications are identified. The critical issues and precautions for preparing PQDs are also discussed. It is also interesting to find that the collected supernatant solutions during the purification of PQDs can be recycled for preparing other types of PQDs. Meanwhile, this work demonstrates different approaches (i) thermal annealing, usage of (ii) methyl acetate and (iii) ethyl acetate as anti-solvents for preparing CsPbI2Br PQDs in the form of thin films on glass substrates. The obtained samples are characterized in terms of morphology, structural and optical properties. The results of this work can provide useful information for researchers, particularly for those who are starting to synthesize PQDs for fabrications of solid-state devices.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The CsPbI2Br perovskite quantum dots (PQDs) have great potential in photovoltaic applications due to their phase stability and optoelectronic properties. In this work, the synthesis technique of CsPbI2Br PQDs with the investigation of their properties and applications are identified. The critical issues and precautions for preparing PQDs are also discussed. It is also interesting to find that the collected supernatant solutions during the purification of PQDs can be recycled for preparing other types of PQDs. Meanwhile, this work demonstrates different approaches (i) thermal annealing, usage of (ii) methyl acetate and (iii) ethyl acetate as anti-solvents for preparing CsPbI2Br PQDs in the form of thin films on glass substrates. The obtained samples are characterized in terms of morphology, structural and optical properties. The results of this work can provide useful information for researchers, particularly for those who are starting to synthesize PQDs for fabrications of solid-state devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能电池用铯基钙钛矿量子点的合成与沉积方法研究
CsPbI2Br钙钛矿量子点(PQDs)由于其相稳定性和光电性能在光伏领域具有很大的应用潜力。本文介绍了CsPbI2Br pqd的合成方法,并对其性能和应用进行了研究。讨论了制备pqd的关键问题和注意事项。有趣的是,在pqd纯化过程中收集的上清溶液可以回收用于制备其他类型的pqd。同时,本工作展示了不同的方法(i)热退火,使用(ii)乙酸甲酯和(iii)乙酸乙酯作为反溶剂在玻璃衬底上制备薄膜形式的CsPbI2Br PQDs。所得样品在形貌、结构和光学性质方面进行了表征。这项工作的结果可以为研究人员提供有用的信息,特别是那些开始合成pqd用于制造固态器件的研究人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
期刊最新文献
Technology for Isolation Essential Oil from the Buds of Populus balsamifera L. Obtaining Edible Pullulan-based Films with Antimicrobial Properties The Synthesis and in vitro Study of 9-fluorenylmethoxycarbonyl Protected Non-Protein Amino Acids Antimicrobial Activity Optimization of the Porous Structure of Carbon Electrodes for Hybrid Supercapacitors with a Redox Electrolyte Based on Potassium Bromide Influence of Annealing Time on the Optical and Electrical Properties of Tin Dioxide-Based Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1