{"title":"Three-dimensional inversion of airborne time-domain electromagnetic data for ground sources","authors":"M. Yi, Soocheol Jeong, A. Johmori, Y. Sasaki","doi":"10.1080/08123985.2022.2158807","DOIUrl":null,"url":null,"abstract":"While most airborne time-domain electromagnetic (ATEM) surveys are carried out using moving-source systems, semi-airborne systems that use a ground-based source, such as GREATEM, have gained popularity in recent years because they allow for more in-depth exploration than moving-source systems. We presented a three-dimensional inversion method for interpreting transient data collected in semi-airborne surveys. Our method is based on a Gauss–Newton minimization approach. The forward problem is solved in the frequency domain using a secondary-field finite-difference technique, and the resulting solution and sensitivity are Fourier-transformed to the time domain using a digital filter. The sensitivities are evaluated by the adjoint-equation method, except for those of a surface region immediately below the source, which are derived by forward modeling the response of a perturbed model based on finite differences. We tested our inversion method on synthetic and real data. The synthetic tests show that the resolution capability of the semi-airborne surveys is dependent on the location of the ground source, which suggests that it is desirable to employ multiple source locations and perform joint inversion of all data sets to ensure the reliability of semi-airborne surveys. Finally, the real data example demonstrates that the recovered conductive zone is consistent with the known distribution of the mineralized zone.","PeriodicalId":50460,"journal":{"name":"Exploration Geophysics","volume":"54 1","pages":"353 - 361"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/08123985.2022.2158807","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
While most airborne time-domain electromagnetic (ATEM) surveys are carried out using moving-source systems, semi-airborne systems that use a ground-based source, such as GREATEM, have gained popularity in recent years because they allow for more in-depth exploration than moving-source systems. We presented a three-dimensional inversion method for interpreting transient data collected in semi-airborne surveys. Our method is based on a Gauss–Newton minimization approach. The forward problem is solved in the frequency domain using a secondary-field finite-difference technique, and the resulting solution and sensitivity are Fourier-transformed to the time domain using a digital filter. The sensitivities are evaluated by the adjoint-equation method, except for those of a surface region immediately below the source, which are derived by forward modeling the response of a perturbed model based on finite differences. We tested our inversion method on synthetic and real data. The synthetic tests show that the resolution capability of the semi-airborne surveys is dependent on the location of the ground source, which suggests that it is desirable to employ multiple source locations and perform joint inversion of all data sets to ensure the reliability of semi-airborne surveys. Finally, the real data example demonstrates that the recovered conductive zone is consistent with the known distribution of the mineralized zone.
期刊介绍:
Exploration Geophysics is published on behalf of the Australian Society of Exploration Geophysicists (ASEG), Society of Exploration Geophysics of Japan (SEGJ), and Korean Society of Earth and Exploration Geophysicists (KSEG).
The journal presents significant case histories, advances in data interpretation, and theoretical developments resulting from original research in exploration and applied geophysics. Papers that may have implications for field practice in Australia, even if they report work from other continents, will be welcome. ´Exploration and applied geophysics´ will be interpreted broadly by the editors, so that geotechnical and environmental studies are by no means precluded.
Papers are expected to be of a high standard. Exploration Geophysics uses an international pool of reviewers drawn from industry and academic authorities as selected by the editorial panel.
The journal provides a common meeting ground for geophysicists active in either field studies or basic research.