Hyperspectral Imagery Denoising Using Minimum Noise Fraction and Video Non-Local Bayes Algorithms

IF 2 4区 地球科学 Q3 REMOTE SENSING Canadian Journal of Remote Sensing Pub Date : 2022-09-03 DOI:10.1080/07038992.2022.2116307
Guangyi Chen, A. Krzyżak, S. Qian
{"title":"Hyperspectral Imagery Denoising Using Minimum Noise Fraction and Video Non-Local Bayes Algorithms","authors":"Guangyi Chen, A. Krzyżak, S. Qian","doi":"10.1080/07038992.2022.2116307","DOIUrl":null,"url":null,"abstract":"Abstract Hyperspectral imagery (HSI) denoising is a popular research topic in remote sensing. In this paper, we propose a novel method for HSI denoising by performing Minimum Noise Fraction (MNF) to the original HSI data cube, thresholding the noisy output bands with the Video Non-Local Bayes (VNLB) algorithm, and then conducting the inverse MNF transform to obtain the denoised data cube. Our experiments demonstrate that the proposed method usually achieves the best denoising results among several existing denoising methods for two HSI data cubes. In addition, it is much faster for HSI denoising than the VNLB algorithm which was originally developed for video denoising.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"694 - 701"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2116307","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Hyperspectral imagery (HSI) denoising is a popular research topic in remote sensing. In this paper, we propose a novel method for HSI denoising by performing Minimum Noise Fraction (MNF) to the original HSI data cube, thresholding the noisy output bands with the Video Non-Local Bayes (VNLB) algorithm, and then conducting the inverse MNF transform to obtain the denoised data cube. Our experiments demonstrate that the proposed method usually achieves the best denoising results among several existing denoising methods for two HSI data cubes. In addition, it is much faster for HSI denoising than the VNLB algorithm which was originally developed for video denoising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最小噪声率和视频非局部Bayes算法的高光谱图像去噪
摘要高光谱图像去噪是遥感领域的一个热门研究课题。在本文中,我们提出了一种新的HSI去噪方法,通过对原始HSI数据立方体执行最小噪声分数(MNF),用视频非局部贝叶斯(VNLB)算法对噪声输出频带进行阈值处理,然后进行逆MNF变换以获得去噪的数据立方体。我们的实验表明,在现有的几种去噪方法中,所提出的方法通常对两个HSI数据立方体取得最好的去噪结果。此外,HSI去噪比最初为视频去噪开发的VNLB算法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
3.80%
发文量
40
期刊介绍: Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT). Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.
期刊最新文献
Crop Classification Using Multi-Temporal RADARSAT Constellation Mission Compact Polarimetry SAR Data A Bi-Temporal Airborne Lidar Shrub-to-Tree Aboveground Biomass Model for the Taiga of Western Canada Estimating GDP by Fusing Nighttime Light and Land Cover Data Active Reinforcement Learning for the Semantic Segmentation of Urban Images Cumulative Changes in Minimum Snow/Ice Extent over Canada and Northern USA for 2000–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1