Real-time online action detection and segmentation using improved efficient linear search

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY International Journal of Computing Science and Mathematics Pub Date : 2019-03-13 DOI:10.1504/IJCSM.2019.10019869
Wang Shiye, Yu Zhezhou, Yu Xiangchun
{"title":"Real-time online action detection and segmentation using improved efficient linear search","authors":"Wang Shiye, Yu Zhezhou, Yu Xiangchun","doi":"10.1504/IJCSM.2019.10019869","DOIUrl":null,"url":null,"abstract":"More and more attention has been paid to linear-time online action detection and video segmentation, due to wide application in the fields of human-computer interaction, games and surveillance. In this paper we propose a new descriptor which can be adopted for action recognition, online action detection and segmentation. In addition, we propose the improved efficient linear search (improved ELS) whose scheme is modified to solve the problem of the existence of many action classes' maximum subarray sums exceeding their thresholds. Then we evaluated our approach on MSRC-12 and MSR-Action3D datasets. The results show that our descriptor achieves the state-of-the-art results on action recognition and the performance of the improved ELS is much higher than that of the ELS.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2019.10019869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

More and more attention has been paid to linear-time online action detection and video segmentation, due to wide application in the fields of human-computer interaction, games and surveillance. In this paper we propose a new descriptor which can be adopted for action recognition, online action detection and segmentation. In addition, we propose the improved efficient linear search (improved ELS) whose scheme is modified to solve the problem of the existence of many action classes' maximum subarray sums exceeding their thresholds. Then we evaluated our approach on MSRC-12 and MSR-Action3D datasets. The results show that our descriptor achieves the state-of-the-art results on action recognition and the performance of the improved ELS is much higher than that of the ELS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时在线动作检测和分割使用改进的高效线性搜索
线性时间在线动作检测和视频分割由于在人机交互、游戏和监控领域的广泛应用而越来越受到关注。在本文中,我们提出了一种新的描述符,它可以用于动作识别、在线动作检测和分割。此外,我们提出了改进的高效线性搜索(改进的ELS),其方案被修改以解决许多动作类的最大子数组和超过其阈值的问题。然后,我们在MSRC-12和MSR-Action3D数据集上评估了我们的方法。结果表明,我们的描述符在动作识别方面取得了最先进的结果,改进的ELS的性能远高于ELS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
37
期刊最新文献
Application of hybrid genetic algorithm based on travelling salesman problem in rural tourism route planning Non-destructive Diagnosis of Knee Osteoarthritis Based on Sparse Coding of MRI Hierarchical neural network detection model based on deep context and attention mechanism Particle resolved direct numerical simulation of heat transfer in gas-solid flows Research on bilingual text similarity detection and analysis based on improved fragment merging algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1