{"title":"Comparative Mathematical Study of Blood Flow Through Stenotic and Aneurysmatic Artery with the Presence and Absence of Blood Clots","authors":"M. Uddin, M. Uddin, Md. Monjarul Alam","doi":"10.47836/mjms.16.3.12","DOIUrl":null,"url":null,"abstract":"Numerical predictions of blood flow and hemodynamic properties through stenosis and aneurysm artery have been studied in the presence of blood clots at the constricted area. The finite element method has been used to solve the partial differential equations of continuity, momentum, Oldroyd-B, and bioheat transport in cartesian coordinates systems. The present investigation carries the potential to compute blood velocity, pressure, and drag coefficients with significance at the throat of stenosis and aneurysm. The models have also been employed to study simulation, blood clots, and hemodynamic characteristics for all modifications. The impact of shearthinning on blood flow is intensified compared to the viscoelastic properties. It is found that the maximum effect of the drag coefficient is visible at the hub of stenotic for nonclotting models. The highest pressure and the lowest velocity are gained for the presence of blood clots at the constraint area. The impact of stenosis and aneurysm artery, drag coefficient, and blood clots on blood flow is the main physical outcome that may be reported in medical science to identify atherosclerosis diseases. The quantitative analysis has been completed numerically with the physiological significance of hemodynamic factors of blood flow which shows the validity of the present model.","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.3.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Numerical predictions of blood flow and hemodynamic properties through stenosis and aneurysm artery have been studied in the presence of blood clots at the constricted area. The finite element method has been used to solve the partial differential equations of continuity, momentum, Oldroyd-B, and bioheat transport in cartesian coordinates systems. The present investigation carries the potential to compute blood velocity, pressure, and drag coefficients with significance at the throat of stenosis and aneurysm. The models have also been employed to study simulation, blood clots, and hemodynamic characteristics for all modifications. The impact of shearthinning on blood flow is intensified compared to the viscoelastic properties. It is found that the maximum effect of the drag coefficient is visible at the hub of stenotic for nonclotting models. The highest pressure and the lowest velocity are gained for the presence of blood clots at the constraint area. The impact of stenosis and aneurysm artery, drag coefficient, and blood clots on blood flow is the main physical outcome that may be reported in medical science to identify atherosclerosis diseases. The quantitative analysis has been completed numerically with the physiological significance of hemodynamic factors of blood flow which shows the validity of the present model.
期刊介绍:
The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.