Bayesian network revealing pathways to workplace innovation and career satisfaction in the public service

IF 3.6 2区 管理学 Q2 BUSINESS Journal of Management Analytics Pub Date : 2020-04-02 DOI:10.1080/23270012.2020.1749900
Warit Wipulanusat, K. Panuwatwanich, R. Stewart, Stewart L. Arnold, Jue Wang
{"title":"Bayesian network revealing pathways to workplace innovation and career satisfaction in the public service","authors":"Warit Wipulanusat, K. Panuwatwanich, R. Stewart, Stewart L. Arnold, Jue Wang","doi":"10.1080/23270012.2020.1749900","DOIUrl":null,"url":null,"abstract":"This paper examined the innovation process in the Australian Public Service (APS) using a Bayesian network (BN) founded on an empirically derived structural equation model. The focus of the BN was ...","PeriodicalId":46290,"journal":{"name":"Journal of Management Analytics","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23270012.2020.1749900","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Management Analytics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1080/23270012.2020.1749900","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 25

Abstract

This paper examined the innovation process in the Australian Public Service (APS) using a Bayesian network (BN) founded on an empirically derived structural equation model. The focus of the BN was ...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯网络揭示了公共服务中工作场所创新和职业满意度的途径
本文使用基于经验推导的结构方程模型的贝叶斯网络(BN)来检验澳大利亚公共服务(APS)的创新过程。BN的重点是。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Management Analytics
Journal of Management Analytics SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
13.30
自引率
3.40%
发文量
14
期刊介绍: The Journal of Management Analytics (JMA) is dedicated to advancing the theory and application of data analytics in traditional business fields. It focuses on the intersection of data analytics with key disciplines such as accounting, finance, management, marketing, production/operations management, and supply chain management. JMA is particularly interested in research that explores the interface between data analytics and these business areas. The journal welcomes studies employing a range of research methods, including empirical research, big data analytics, data science, operations research, management science, decision science, and simulation modeling.
期刊最新文献
Handling highly imbalanced data for classifying fatality of auto collisions using machine learning techniques Emergency production of medical products: partial decentralization vs. complete decentralization Using smart card data to develop origin-destination matrix-based business analytics for bus rapid transit systems: case study of Jakarta, Indonesia A review of big data analytics models for assessing non-pharmaceutical interventions for COVID-19 pandemic management Recognition of pulse-in-pulse modulation type of radar signal based on feature extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1