{"title":"Integral representations of isotropic semiclassical functions and applications","authors":"V. Guillemin, A. Uribe, Zuoqin Wang","doi":"10.4171/jst/400","DOIUrl":null,"url":null,"abstract":"In [GUW] we introduced a class of “semi-classical functions of isotropic type”, starting with a model case and applying Fourier integral operators associated with canonical transformations. These functions are a substantial generalization of the “oscillatory functions of Lagrangian type” that have played major role in semi-classical and micro-local analysis. In this paper we exhibit more clearly the nature of these isotropic functions by obtaining oscillatory integral expressions for them. Then we use these to prove that the classes of isotropic functions are equivariant with respect to the action of general FIOs (under the usual clean-intersection hypothesis). The simplest examples of isotropic states are the “coherent states”, a class of oscillatory functions that has played a pivotal role in mathematics and theoretical physics beginning with their introduction by of Schrödinger in the 1920’s. We prove that every oscillatory function of isotropic type can be expressed as a superposition of coherent states, and examine some implications of that fact. We also show that certain functions of elliptic operators have isotropic functions for Schwartz kernels. This lead us to a result on an eigenvalue counting function that appears to be new (Corollary 4.5). In memory of Mikhail Shubin.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/400","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In [GUW] we introduced a class of “semi-classical functions of isotropic type”, starting with a model case and applying Fourier integral operators associated with canonical transformations. These functions are a substantial generalization of the “oscillatory functions of Lagrangian type” that have played major role in semi-classical and micro-local analysis. In this paper we exhibit more clearly the nature of these isotropic functions by obtaining oscillatory integral expressions for them. Then we use these to prove that the classes of isotropic functions are equivariant with respect to the action of general FIOs (under the usual clean-intersection hypothesis). The simplest examples of isotropic states are the “coherent states”, a class of oscillatory functions that has played a pivotal role in mathematics and theoretical physics beginning with their introduction by of Schrödinger in the 1920’s. We prove that every oscillatory function of isotropic type can be expressed as a superposition of coherent states, and examine some implications of that fact. We also show that certain functions of elliptic operators have isotropic functions for Schwartz kernels. This lead us to a result on an eigenvalue counting function that appears to be new (Corollary 4.5). In memory of Mikhail Shubin.
期刊介绍:
The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome.
The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory.
Schrödinger operators, scattering theory and resonances;
eigenvalues: perturbation theory, asymptotics and inequalities;
quantum graphs, graph Laplacians;
pseudo-differential operators and semi-classical analysis;
random matrix theory;
the Anderson model and other random media;
non-self-adjoint matrices and operators, including Toeplitz operators;
spectral geometry, including manifolds and automorphic forms;
linear and nonlinear differential operators, especially those arising in geometry and physics;
orthogonal polynomials;
inverse problems.