Fusing In-Storage and Near-Storage Acceleration of Convolutional Neural Networks

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Journal on Emerging Technologies in Computing Systems Pub Date : 2023-06-17 DOI:10.1145/3597496
Ikenna Okafor, A. Ramanathan, Nagadastagiri Challapalle, Zheyu Li, Vijaykrishnan Narayanan
{"title":"Fusing In-Storage and Near-Storage Acceleration of Convolutional Neural Networks","authors":"Ikenna Okafor, A. Ramanathan, Nagadastagiri Challapalle, Zheyu Li, Vijaykrishnan Narayanan","doi":"10.1145/3597496","DOIUrl":null,"url":null,"abstract":"Video analytics have a wide range of applications and has attracted much interest over the years. While it can be both computationally and energy intensive, video analytics can greatly benefit from in/ near memory compute. The practice of moving compute closer to memory has continued to show improvements to performance and energy consumption and is seeing increasing adoption. Recent advancements in solid state drives (SSDs) have incorporated near memory Field Programmable Gate Arrays (FPGAs) with shared access to the drive’s storage cells. These near memory FPGAs are capable of running operations required by video analytic pipelines such as object detection and template matching. These operations are typically executed using Convolutional Neural Networks (CNNs). A CNN is composed of multiple individually processed layers which perform various image processing tasks. Due to lack of resources, a layer may be partitioned into more manageable sub-layers. These sub-layers are then processed sequentially, however some sub-layers can be processed simultaneously. Moreover, the storage cells within FPGA equipped SSD’s are capable of being augmented with in-storage compute to accelerate CNN workloads and exploit the intra parallelism within a CNN layer. To this end we present our work, which leverages heterogeneous architectures to create an in/near-storage acceleration solution for video analytics. We designed a NAND flash accelerator, and an FPGA accelerator, then mapped and evaluated several CNN benchmarks. We show how to utilize FPGAs, local DRAMs, and in-memory SSD compute to accelerate CNN workloads. Our work also demonstrates how to remove unnecessary memory transfers to save latency and energy.","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3597496","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Video analytics have a wide range of applications and has attracted much interest over the years. While it can be both computationally and energy intensive, video analytics can greatly benefit from in/ near memory compute. The practice of moving compute closer to memory has continued to show improvements to performance and energy consumption and is seeing increasing adoption. Recent advancements in solid state drives (SSDs) have incorporated near memory Field Programmable Gate Arrays (FPGAs) with shared access to the drive’s storage cells. These near memory FPGAs are capable of running operations required by video analytic pipelines such as object detection and template matching. These operations are typically executed using Convolutional Neural Networks (CNNs). A CNN is composed of multiple individually processed layers which perform various image processing tasks. Due to lack of resources, a layer may be partitioned into more manageable sub-layers. These sub-layers are then processed sequentially, however some sub-layers can be processed simultaneously. Moreover, the storage cells within FPGA equipped SSD’s are capable of being augmented with in-storage compute to accelerate CNN workloads and exploit the intra parallelism within a CNN layer. To this end we present our work, which leverages heterogeneous architectures to create an in/near-storage acceleration solution for video analytics. We designed a NAND flash accelerator, and an FPGA accelerator, then mapped and evaluated several CNN benchmarks. We show how to utilize FPGAs, local DRAMs, and in-memory SSD compute to accelerate CNN workloads. Our work also demonstrates how to remove unnecessary memory transfers to save latency and energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络的存储融合与近存储加速
视频分析有着广泛的应用,多年来引起了人们的极大兴趣。虽然视频分析既可能是计算密集型的,也可能是能源密集型的。但它可以从内存内/近内存计算中受益匪浅。将计算移近内存的做法继续显示出性能和能耗的改进,并且越来越多地被采用。固态硬盘(SSD)的最新进展结合了近存储器现场可编程门阵列(FPGA),可以共享对硬盘存储单元的访问。这些近内存FPGA能够运行视频分析管道所需的操作,如对象检测和模板匹配。这些操作通常使用卷积神经网络(CNNs)来执行。CNN由多个单独处理的层组成,这些层执行各种图像处理任务。由于缺乏资源,一个层可能被划分为更易于管理的子层。然后依次处理这些子层,但是可以同时处理一些子层。此外,配备FPGA的SSD中的存储单元能够通过存储内计算进行扩展,以加速CNN工作负载并利用CNN层内的内部并行性。为此,我们介绍了我们的工作,该工作利用异构架构为视频分析创建了一个存储内/近存储加速解决方案。我们设计了一个NAND闪存加速器和一个FPGA加速器,然后映射和评估了几个CNN基准。我们展示了如何利用FPGA、本地DRAM和内存SSD计算来加速CNN工作负载。我们的工作还演示了如何消除不必要的内存传输,以节省延迟和能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems 工程技术-工程:电子与电气
CiteScore
4.80
自引率
4.50%
发文量
86
审稿时长
3 months
期刊介绍: The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system. The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors
期刊最新文献
PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties SAT-based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs Towards practical superconducting accelerators for machine learning using U-SFQ Towards Energy-Efficient Spiking Neural Networks: A Robust Hybrid CMOS-Memristive Accelerator An Analysis of Various Design Pathways Towards Multi-Terabit Photonic On-Interposer Interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1