{"title":"How do microbes grow in nature? The role of population dynamics in microbial ecology and evolution","authors":"Justus Wilhelm Fink , Michael Manhart","doi":"10.1016/j.coisb.2023.100470","DOIUrl":null,"url":null,"abstract":"<div><p>The growth of microbial populations in nature is dynamic, as the cellular physiology and environment of these populations change. Population dynamics have wide-ranging consequences for ecology and evolution, determining how species interact and which mutations fix. Understanding these dynamics is also critical for clinical and environmental applications in which we need to promote or inhibit microbial growth<span>. We first address the latest efforts and outstanding challenges in measuring microbial population dynamics in natural environments. We next summarize fundamental concepts and empirical data on how population dynamics both shape and are shaped by evolutionary processes. Finally, we discuss the role of tradeoffs in microbial population dynamics, which may reveal physiological constraints and help to maintain ecological diversity. We find that current evidence for tradeoffs in population dynamics is limited, but that consideration of the evolutionary context of these tradeoffs is necessary for designing future experiments that can better address this problem.</span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The growth of microbial populations in nature is dynamic, as the cellular physiology and environment of these populations change. Population dynamics have wide-ranging consequences for ecology and evolution, determining how species interact and which mutations fix. Understanding these dynamics is also critical for clinical and environmental applications in which we need to promote or inhibit microbial growth. We first address the latest efforts and outstanding challenges in measuring microbial population dynamics in natural environments. We next summarize fundamental concepts and empirical data on how population dynamics both shape and are shaped by evolutionary processes. Finally, we discuss the role of tradeoffs in microbial population dynamics, which may reveal physiological constraints and help to maintain ecological diversity. We find that current evidence for tradeoffs in population dynamics is limited, but that consideration of the evolutionary context of these tradeoffs is necessary for designing future experiments that can better address this problem.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution