How do microbes grow in nature? The role of population dynamics in microbial ecology and evolution

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2023-08-09 DOI:10.1016/j.coisb.2023.100470
Justus Wilhelm Fink , Michael Manhart
{"title":"How do microbes grow in nature? The role of population dynamics in microbial ecology and evolution","authors":"Justus Wilhelm Fink ,&nbsp;Michael Manhart","doi":"10.1016/j.coisb.2023.100470","DOIUrl":null,"url":null,"abstract":"<div><p>The growth of microbial populations in nature is dynamic, as the cellular physiology and environment of these populations change. Population dynamics have wide-ranging consequences for ecology and evolution, determining how species interact and which mutations fix. Understanding these dynamics is also critical for clinical and environmental applications in which we need to promote or inhibit microbial growth<span>. We first address the latest efforts and outstanding challenges in measuring microbial population dynamics in natural environments. We next summarize fundamental concepts and empirical data on how population dynamics both shape and are shaped by evolutionary processes. Finally, we discuss the role of tradeoffs in microbial population dynamics, which may reveal physiological constraints and help to maintain ecological diversity. We find that current evidence for tradeoffs in population dynamics is limited, but that consideration of the evolutionary context of these tradeoffs is necessary for designing future experiments that can better address this problem.</span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The growth of microbial populations in nature is dynamic, as the cellular physiology and environment of these populations change. Population dynamics have wide-ranging consequences for ecology and evolution, determining how species interact and which mutations fix. Understanding these dynamics is also critical for clinical and environmental applications in which we need to promote or inhibit microbial growth. We first address the latest efforts and outstanding challenges in measuring microbial population dynamics in natural environments. We next summarize fundamental concepts and empirical data on how population dynamics both shape and are shaped by evolutionary processes. Finally, we discuss the role of tradeoffs in microbial population dynamics, which may reveal physiological constraints and help to maintain ecological diversity. We find that current evidence for tradeoffs in population dynamics is limited, but that consideration of the evolutionary context of these tradeoffs is necessary for designing future experiments that can better address this problem.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物在自然界中是如何生长的?种群动态在微生物生态学和进化中的作用
自然界中微生物种群的生长是动态的,因为这些种群的细胞生理和环境发生了变化。种群动态对生态学和进化有着广泛的影响,决定了物种如何相互作用以及哪些突变可以修复。了解这些动力学对于我们需要促进或抑制微生物生长的临床和环境应用也至关重要。我们首先讨论了在测量自然环境中微生物种群动态方面的最新努力和突出挑战。接下来,我们将总结关于种群动态如何形成和由进化过程形成的基本概念和经验数据。最后,我们讨论了权衡在微生物种群动力学中的作用,这可能揭示生理约束,并有助于维持生态多样性。我们发现,目前在种群动力学中进行权衡的证据是有限的,但考虑这些权衡的进化背景对于设计能够更好地解决这个问题的未来实验是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1