{"title":"Propagation Channels for mmWave Vehicular Communications: State-of-the-art and Future Research Directions","authors":"Furqan Jameel, Shurjeel Wyne, S. Nawaz, Zheng Chang","doi":"10.1109/MWC.2018.1800174","DOIUrl":null,"url":null,"abstract":"Vehicular communications essentially support automotive applications for safety and infotainment. For this reason, industry leaders envision an enhanced role for vehicular communications in the fifth generation of mobile communications technology. Over the years, the number of vehicle- mounted sensors has increased steadily, which potentially leads to more volume of critical data communications in a short time. Also, emerging applications such as remote/autonomous driving and infotainment such as high-definition movie streaming require data-rates on the order of multiple Gb/s. Such high data rates require a large system bandwidth, but very limited bandwidth is available in the sub-6 GHz cellular bands. This has sparked research interest in the millimeter wave (mmWave) band (10 GHz-300 GHz), where a large bandwidth is available to support the high data rate and low latency communications envisioned for emerging vehicular applications. However, leveraging mmWave communications requires a thorough understanding of the relevant vehicular propagation channels, which are significantly different from those investigated below 6 GHz. Despite their significance, very few investigations of mmWave vehicular channels are reported in the literature. This work highlights the key attributes of mmWave vehicular communication channels and surveys the recent literature on channel characterization efforts in order to provide a gap analysis and propose possible directions for future research.","PeriodicalId":13342,"journal":{"name":"IEEE Wireless Communications","volume":"26 1","pages":"144-150"},"PeriodicalIF":10.9000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/MWC.2018.1800174","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MWC.2018.1800174","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 77
Abstract
Vehicular communications essentially support automotive applications for safety and infotainment. For this reason, industry leaders envision an enhanced role for vehicular communications in the fifth generation of mobile communications technology. Over the years, the number of vehicle- mounted sensors has increased steadily, which potentially leads to more volume of critical data communications in a short time. Also, emerging applications such as remote/autonomous driving and infotainment such as high-definition movie streaming require data-rates on the order of multiple Gb/s. Such high data rates require a large system bandwidth, but very limited bandwidth is available in the sub-6 GHz cellular bands. This has sparked research interest in the millimeter wave (mmWave) band (10 GHz-300 GHz), where a large bandwidth is available to support the high data rate and low latency communications envisioned for emerging vehicular applications. However, leveraging mmWave communications requires a thorough understanding of the relevant vehicular propagation channels, which are significantly different from those investigated below 6 GHz. Despite their significance, very few investigations of mmWave vehicular channels are reported in the literature. This work highlights the key attributes of mmWave vehicular communication channels and surveys the recent literature on channel characterization efforts in order to provide a gap analysis and propose possible directions for future research.
期刊介绍:
IEEE Wireless Communications is tailored for professionals within the communications and networking communities. It addresses technical and policy issues associated with personalized, location-independent communications across various media and protocol layers. Encompassing both wired and wireless communications, the magazine explores the intersection of computing, the mobility of individuals, communicating devices, and personalized services.
Every issue of this interdisciplinary publication presents high-quality articles delving into the revolutionary technological advances in personal, location-independent communications, and computing. IEEE Wireless Communications provides an insightful platform for individuals engaged in these dynamic fields, offering in-depth coverage of significant developments in the realm of communication technology.