Implementing model reduction to the JuliaFEM platform

Q4 Engineering Rakenteiden Mekaniikka Pub Date : 2018-08-16 DOI:10.23998/RM.69026
Marja Rapo, Jukka Aho, H. Koivurova, T. Frondelius
{"title":"Implementing model reduction to the JuliaFEM platform","authors":"Marja Rapo, Jukka Aho, H. Koivurova, T. Frondelius","doi":"10.23998/RM.69026","DOIUrl":null,"url":null,"abstract":"JuliaFEM is an open source finite element method solver written in the Julia language. This paper presents an implementation of two common model reduction methods: the Guyan reduction and the Craig-Bampton method. The goal was to implement these algorithms to the JuliaFEM platform and demonstrate that the code works correctly. This paper first describes the JuliaFEM concept briefly after which it presents the theory of model reduction, and finally, it demonstrates the implemented functions in an example model. This paper includes instructions for using the implemented algorithms, and reference the code itself in GitHub. The reduced stiness and mass matrices give the same results in both static and dynamic analyses as the original matrices, which proves that the code works correctly. The code runs smoothly on relatively large model of 12.6 million degrees of freedom. In future, damping could be included in the dynamic condensation now that it has been shown to work.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/RM.69026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

JuliaFEM is an open source finite element method solver written in the Julia language. This paper presents an implementation of two common model reduction methods: the Guyan reduction and the Craig-Bampton method. The goal was to implement these algorithms to the JuliaFEM platform and demonstrate that the code works correctly. This paper first describes the JuliaFEM concept briefly after which it presents the theory of model reduction, and finally, it demonstrates the implemented functions in an example model. This paper includes instructions for using the implemented algorithms, and reference the code itself in GitHub. The reduced stiness and mass matrices give the same results in both static and dynamic analyses as the original matrices, which proves that the code works correctly. The code runs smoothly on relatively large model of 12.6 million degrees of freedom. In future, damping could be included in the dynamic condensation now that it has been shown to work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现对JuliaFEM平台的模型缩减
JuliaFEM是一个用Julia语言编写的开源有限元方法求解器。本文介绍了两种常见的模型约简方法的实现:Guyan约简和Craig-Bampton方法。目标是在JuliaFEM平台上实现这些算法,并证明代码工作正常。本文首先简要介绍了JuliaFEM的概念,然后介绍了模型约简的理论,最后在一个示例模型中演示了实现的功能。本文包括使用已实现算法的说明,并参考了GitHub中的代码本身。简化的stiness矩阵和mass矩阵在静态和动态分析中给出了与原始矩阵相同的结果,证明了代码的正确性。该代码在1260万自由度的相对较大的模型上运行平稳。在未来,阻尼可以包括在动态冷凝中,因为它已经被证明是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rakenteiden Mekaniikka
Rakenteiden Mekaniikka Engineering-Mechanical Engineering
CiteScore
0.50
自引率
0.00%
发文量
2
审稿时长
16 weeks
期刊最新文献
Numerical investigation of box shape effects on soil direct shear test Evaluation of machine learning techniques for capacity prediction of cold-formed steel beams subjected to bending Djebar Baroudin muistoa kunnioittaen Jari Laukkasen muistoa kunnioittaen Tekninen selvitys: Tarkkoja elementtejä helposti
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1