{"title":"GEM-Gate: A Low-Cost, Flexible Approach to BioBrick Assembly","authors":"Chloe Bower, Christina Harbin, Devin Camenares","doi":"10.3390/dna3010003","DOIUrl":null,"url":null,"abstract":"Rapid and modular assembly of DNA parts is crucial to many synthetic biologists. This can be achieved through Golden Gate assembly, which often requires purchase and delivery of new primers for each part and assembly configuration. Here, we report on a small set of primers that can be used to amplify any DNA from the Registry of Standard Biological Parts for Golden Gate assembly. These primers bind to regions common to the backbone plasmid for these parts, but pair imperfectly and introduce type IIS restriction enzyme sites in a way that minimizes assembly scars. This approach makes redesign of assembly strategies faster and less expensive and can help expand access to synthetic biology to a wider group of scientists and students.","PeriodicalId":77708,"journal":{"name":"DNA (Mary Ann Liebert, Inc.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA (Mary Ann Liebert, Inc.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dna3010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and modular assembly of DNA parts is crucial to many synthetic biologists. This can be achieved through Golden Gate assembly, which often requires purchase and delivery of new primers for each part and assembly configuration. Here, we report on a small set of primers that can be used to amplify any DNA from the Registry of Standard Biological Parts for Golden Gate assembly. These primers bind to regions common to the backbone plasmid for these parts, but pair imperfectly and introduce type IIS restriction enzyme sites in a way that minimizes assembly scars. This approach makes redesign of assembly strategies faster and less expensive and can help expand access to synthetic biology to a wider group of scientists and students.