T. Bezerra, A. Borkum, E. Church, C. Cuesta, Z. Djurcic, J. Genovesi, J. Haiston, C. Jackson, I. Lazanu, B. Monreal, Sylvia Munson, C. Ortiz, M. Parvu, S. Peeters, D. Pershey, Sagar Sharma Poudel, J. Reichenbacher, R. Saldanha, K. Scholberg, G. Sinev, S. Westerdale, J. Zennamo
{"title":"Large low background kTon-scale liquid argon time projection chambers","authors":"T. Bezerra, A. Borkum, E. Church, C. Cuesta, Z. Djurcic, J. Genovesi, J. Haiston, C. Jackson, I. Lazanu, B. Monreal, Sylvia Munson, C. Ortiz, M. Parvu, S. Peeters, D. Pershey, Sagar Sharma Poudel, J. Reichenbacher, R. Saldanha, K. Scholberg, G. Sinev, S. Westerdale, J. Zennamo","doi":"10.1088/1361-6471/acc394","DOIUrl":null,"url":null,"abstract":"\n We find that it is possible to increase sensitivity to low energy physics in a third or fourth DUNE-like module with careful controls over radiopurity and targeted modifications to a detector similar to the DUNE Far Detector design. In particular, sensitivity to supernova and solar neutrinos can be enhanced with improved MeV-scale reach. A neutrinoless double beta decay search with $^{136}$Xe loading appears feasible. Furthermore, sensitivity to Weakly-Interacting Massive Particle (WIMP) Dark Matter (DM) becomes competitive with the planned world program in such a detector, offering a unique seasonal variation detection that is characteristic for the nature of WIMPs.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/acc394","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 6
Abstract
We find that it is possible to increase sensitivity to low energy physics in a third or fourth DUNE-like module with careful controls over radiopurity and targeted modifications to a detector similar to the DUNE Far Detector design. In particular, sensitivity to supernova and solar neutrinos can be enhanced with improved MeV-scale reach. A neutrinoless double beta decay search with $^{136}$Xe loading appears feasible. Furthermore, sensitivity to Weakly-Interacting Massive Particle (WIMP) Dark Matter (DM) becomes competitive with the planned world program in such a detector, offering a unique seasonal variation detection that is characteristic for the nature of WIMPs.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.