{"title":"Non-linear dynamics and control of an automotive suspension system based on local and global bifurcation analysis","authors":"Y. Lue, Shun-Chang Chang","doi":"10.1504/IJVAS.2017.087184","DOIUrl":null,"url":null,"abstract":"This paper details the non-linear dynamic behaviours and control of a non-linear semi-active suspension system using a quarter-car model under kinematic excitation by a road surface profile. The results of local and global bifurcation analysis indicate that the hysteretic non-linear characteristics of damping force cause the suspension system to exhibit codimension-two bifurcation, resulting in homoclinic orbits and a pitchfork bifurcation. The complex dynamic behaviour of automotive suspension systems was examined using a bifurcation diagram, phase portraits, a Poincare map, and frequency spectra. We also used Lyapunov exponent to identify the occurrence of chaotic motion and verify our analysis. Finally, a dither signal control was used to convert chaotic behaviours into periodic motion. Simulation results verify the effectiveness of the proposed control method.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2017.087184","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2017.087184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
This paper details the non-linear dynamic behaviours and control of a non-linear semi-active suspension system using a quarter-car model under kinematic excitation by a road surface profile. The results of local and global bifurcation analysis indicate that the hysteretic non-linear characteristics of damping force cause the suspension system to exhibit codimension-two bifurcation, resulting in homoclinic orbits and a pitchfork bifurcation. The complex dynamic behaviour of automotive suspension systems was examined using a bifurcation diagram, phase portraits, a Poincare map, and frequency spectra. We also used Lyapunov exponent to identify the occurrence of chaotic motion and verify our analysis. Finally, a dither signal control was used to convert chaotic behaviours into periodic motion. Simulation results verify the effectiveness of the proposed control method.