Multivariate Markov-switching score-driven models: an application to the global crude oil market

IF 0.7 4区 经济学 Q3 ECONOMICS Studies in Nonlinear Dynamics and Econometrics Pub Date : 2021-04-28 DOI:10.1515/snde-2020-0099
Szabolcs Blazsek, A. Escribano, Adrián Licht
{"title":"Multivariate Markov-switching score-driven models: an application to the global crude oil market","authors":"Szabolcs Blazsek, A. Escribano, Adrián Licht","doi":"10.1515/snde-2020-0099","DOIUrl":null,"url":null,"abstract":"Abstract A new class of multivariate nonlinear quasi-vector autoregressive (QVAR) models is introduced. It is a Markov switching score-driven model with stochastic seasonality for the multivariate t-distribution (MS-Seasonal-t-QVAR). As an extension, we allow for the possibility of having common-trends and nonlinear co-integration. Score-driven nonlinear updates of local level and seasonality are used, which are robust to outliers within each regime. We show that VAR integrated moving average (VARIMA) type filters are special cases of QVAR filters. Using exclusion, sign, and elasticity identification restrictions in MS-Seasonal-t-QVAR with common-trends, we provide short-run and long-run impulse response functions for the global crude oil market.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"26 1","pages":"313 - 335"},"PeriodicalIF":0.7000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/snde-2020-0099","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1515/snde-2020-0099","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract A new class of multivariate nonlinear quasi-vector autoregressive (QVAR) models is introduced. It is a Markov switching score-driven model with stochastic seasonality for the multivariate t-distribution (MS-Seasonal-t-QVAR). As an extension, we allow for the possibility of having common-trends and nonlinear co-integration. Score-driven nonlinear updates of local level and seasonality are used, which are robust to outliers within each regime. We show that VAR integrated moving average (VARIMA) type filters are special cases of QVAR filters. Using exclusion, sign, and elasticity identification restrictions in MS-Seasonal-t-QVAR with common-trends, we provide short-run and long-run impulse response functions for the global crude oil market.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元马尔可夫开关分数驱动模型:在全球原油市场中的应用
摘要介绍了一类新的多元非线性拟向量自回归(QVAR)模型。它是一个多变量t分布的具有随机季节性的马尔可夫切换分数驱动模型(MS-Seasonal-t-QVAR)。作为扩展,我们允许具有共同趋势和非线性协整的可能性。使用了分数驱动的局部水平和季节性的非线性更新,这对每个制度内的异常值都是鲁棒的。我们证明了VAR积分移动平均(VARIMA)型滤波器是QVAR滤波器的特殊情况。利用具有共同趋势的MS-Seasonal-t-QVAR中的排除、符号和弹性识别限制,我们为全球原油市场提供了短期和长期脉冲响应函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
期刊最新文献
Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros Stability in Threshold VAR Models Co-Jumping of Treasury Yield Curve Rates Determination of the Number of Breaks in High-Dimensional Factor Models via Cross-Validation Comparison of Score-Driven Equity-Gold Portfolios During the COVID-19 Pandemic Using Model Confidence Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1