Suhail Basalama, Atefeh Sohrabizadeh, Jie Wang, Licheng Guo, J. Cong
{"title":"FlexCNN: An End-to-end Framework for Composing CNN Accelerators on FPGA","authors":"Suhail Basalama, Atefeh Sohrabizadeh, Jie Wang, Licheng Guo, J. Cong","doi":"10.1145/3570928","DOIUrl":null,"url":null,"abstract":"With reduced data reuse and parallelism, recent convolutional neural networks (CNNs) create new challenges for FPGA acceleration. Systolic arrays (SAs) are efficient, scalable architectures for convolutional layers, but without proper optimizations, their efficiency drops dramatically for reasons: (1) the different dimensions within same-type layers, (2) the different convolution layers especially transposed and dilated convolutions, and (3) CNN’s complex dataflow graph. Furthermore, significant overheads arise when integrating FPGAs into machine learning frameworks. Therefore, we present a flexible, composable architecture called FlexCNN, which delivers high computation efficiency by employing dynamic tiling, layer fusion, and data layout optimizations. Additionally, we implement a novel versatile SA to process normal, transposed, and dilated convolutions efficiently. FlexCNN also uses a fully pipelined software-hardware integration that alleviates the software overheads. Moreover, with an automated compilation flow, FlexCNN takes a CNN in the ONNX1 representation, performs a design space exploration, and generates an FPGA accelerator. The framework is tested using three complex CNNs: OpenPose, U-Net, and E-Net. The architecture optimizations achieve 2.3× performance improvement. Compared to a standard SA, the versatile SA achieves close-to-ideal speedups, with up to 5.98× and 13.42× for transposed and dilated convolutions, with a 6% average area overhead. The pipelined integration leads to a 5× speedup for OpenPose.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"16 1","pages":"1 - 32"},"PeriodicalIF":3.1000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3570928","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4
Abstract
With reduced data reuse and parallelism, recent convolutional neural networks (CNNs) create new challenges for FPGA acceleration. Systolic arrays (SAs) are efficient, scalable architectures for convolutional layers, but without proper optimizations, their efficiency drops dramatically for reasons: (1) the different dimensions within same-type layers, (2) the different convolution layers especially transposed and dilated convolutions, and (3) CNN’s complex dataflow graph. Furthermore, significant overheads arise when integrating FPGAs into machine learning frameworks. Therefore, we present a flexible, composable architecture called FlexCNN, which delivers high computation efficiency by employing dynamic tiling, layer fusion, and data layout optimizations. Additionally, we implement a novel versatile SA to process normal, transposed, and dilated convolutions efficiently. FlexCNN also uses a fully pipelined software-hardware integration that alleviates the software overheads. Moreover, with an automated compilation flow, FlexCNN takes a CNN in the ONNX1 representation, performs a design space exploration, and generates an FPGA accelerator. The framework is tested using three complex CNNs: OpenPose, U-Net, and E-Net. The architecture optimizations achieve 2.3× performance improvement. Compared to a standard SA, the versatile SA achieves close-to-ideal speedups, with up to 5.98× and 13.42× for transposed and dilated convolutions, with a 6% average area overhead. The pipelined integration leads to a 5× speedup for OpenPose.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.