{"title":"Mg records of two stalagmites from B7-Cave (northwest Germany) indicating long-term precipitation changes during Early to Mid-Holocene","authors":"D. Riechelmann, K. Jochum, D. Richter, D. Scholz","doi":"10.5038/1827-806x.52.1.2440","DOIUrl":null,"url":null,"abstract":"Two stalagmites from B7-Cave in northwest Germany, which is part of the same cave system as the intensively studied Bunker Cave, were re-dated by multi collector inductively coupled plasma mass spectrometry (MC-ICPMS) 230Th/U-dating. Furthermore, the concentration of Mg, Sr, Ba, P, Y, Zn, and Al were determined at high-resolution by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Stalagmite B7-1 grew from 10.8 to 5.8 ka BP. Stalagmite B7-7 grew during three growth phases from 11.0 to 6.2, 3.13 to 2.86 (late Bronze Age), and 1.27 to 1.15 ka BP (early Medieval Period). Aluminium is a proxy for detrital material and corresponds very well with the visible detrital layers in stalagmite B7-1 and the oldest growth phase of stalagmite B7-7. The two younger growth phases of stalagmite B7-7 are very clean and show very low Al concentrations. Phosphorus, Y, and Zn show positive correlations in both stalagmites and all growth phases, but do not show a relationship to temperature or precipitation. This may be related to the elevated detrital content in both stalagmites. Barium and Sr also show a positive correlation in both stalagmites and all growth phases, which is related to their dependency on growth rate. Magnesium is most probably influenced by prior calcite precipitation and therefore a proxy for past precipitation/infiltration. The Mg records of stalagmite B7-1 and of the oldest growth phase of stalagmite B7-7 show decreasing Mg concentration with time reflecting decreasing prior calcite precipitation and therefore increasing precipitation during the Early to Mid-Holocene. This is consistent with other climate reconstructions from Central Europe.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5038/1827-806x.52.1.2440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Two stalagmites from B7-Cave in northwest Germany, which is part of the same cave system as the intensively studied Bunker Cave, were re-dated by multi collector inductively coupled plasma mass spectrometry (MC-ICPMS) 230Th/U-dating. Furthermore, the concentration of Mg, Sr, Ba, P, Y, Zn, and Al were determined at high-resolution by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Stalagmite B7-1 grew from 10.8 to 5.8 ka BP. Stalagmite B7-7 grew during three growth phases from 11.0 to 6.2, 3.13 to 2.86 (late Bronze Age), and 1.27 to 1.15 ka BP (early Medieval Period). Aluminium is a proxy for detrital material and corresponds very well with the visible detrital layers in stalagmite B7-1 and the oldest growth phase of stalagmite B7-7. The two younger growth phases of stalagmite B7-7 are very clean and show very low Al concentrations. Phosphorus, Y, and Zn show positive correlations in both stalagmites and all growth phases, but do not show a relationship to temperature or precipitation. This may be related to the elevated detrital content in both stalagmites. Barium and Sr also show a positive correlation in both stalagmites and all growth phases, which is related to their dependency on growth rate. Magnesium is most probably influenced by prior calcite precipitation and therefore a proxy for past precipitation/infiltration. The Mg records of stalagmite B7-1 and of the oldest growth phase of stalagmite B7-7 show decreasing Mg concentration with time reflecting decreasing prior calcite precipitation and therefore increasing precipitation during the Early to Mid-Holocene. This is consistent with other climate reconstructions from Central Europe.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.