Structural and functional analysis of four non-coding Y RNAs from Chinese hamster cells: identification, molecular dynamics simulations and DNA replication initiation assays
Quirino Alves de Lima Neto, Francisco Ferreira Duarte Junior, Paulo Sérgio Alves Bueno, Flavio Augusto Vicente Seixas, Madzia Pauline Kowalski, Eyemen Kheir, Torsten Krude, Maria Aparecida Fernandez
{"title":"Structural and functional analysis of four non-coding Y RNAs from Chinese hamster cells: identification, molecular dynamics simulations and DNA replication initiation assays","authors":"Quirino Alves de Lima Neto, Francisco Ferreira Duarte Junior, Paulo Sérgio Alves Bueno, Flavio Augusto Vicente Seixas, Madzia Pauline Kowalski, Eyemen Kheir, Torsten Krude, Maria Aparecida Fernandez","doi":"10.1186/s12867-015-0053-5","DOIUrl":null,"url":null,"abstract":"<p>The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro.</p><p>We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The <i>chY1</i>, <i>chY3</i> and <i>chY5</i> genes were highly conserved with their vertebrate counterparts, whilst the <i>chY4</i> gene showed a relatively high degree of diversification from the other vertebrate <i>Y4</i> genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four <i>Y</i> RNA genes present in the hamster genome, we found that only the <i>chY1</i> and <i>chY3</i> RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the <i>chY4</i> and <i>chY5</i> RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system.</p><p>These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"17 1","pages":""},"PeriodicalIF":2.9460,"publicationDate":"2016-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-015-0053-5","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s12867-015-0053-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
Abstract
The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro.
We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The chY1, chY3 and chY5 genes were highly conserved with their vertebrate counterparts, whilst the chY4 gene showed a relatively high degree of diversification from the other vertebrate Y4 genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four Y RNA genes present in the hamster genome, we found that only the chY1 and chY3 RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the chY4 and chY5 RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system.
These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.
期刊介绍:
BMC Molecular Biology is an open access journal publishing original peer-reviewed research articles in all aspects of DNA and RNA in a cellular context, encompassing investigations of chromatin, replication, recombination, mutation, repair, transcription, translation and RNA processing and function.