{"title":"On intersection volumes of confidence hyper-ellipsoids and two geometric Monte Carlo methods","authors":"Nima Rabiei, E. Saleeby","doi":"10.1515/mcma-2021-2087","DOIUrl":null,"url":null,"abstract":"Abstract The intersection or the overlap region of two n-dimensional ellipsoids plays an important role in statistical decision making in a number of applications. For instance, the intersection volume of two n-dimensional ellipsoids has been employed to define dissimilarity measures in time series clustering (see [M. Bakoben, T. Bellotti and N. M. Adams, Improving clustering performance by incorporating uncertainty, Pattern Recognit. Lett. 77 2016, 28–34]). Formulas for the intersection volumes of two n-dimensional ellipsoids are not known. In this article, we first derive exact formulas to determine the intersection volume of two hyper-ellipsoids satisfying a certain condition. Then we adapt and extend two geometric type Monte Carlo methods that in principle allow us to compute the intersection volume of any two generalized convex hyper-ellipsoids. Using the exact formulas, we evaluate the performance of the two Monte Carlo methods. Our numerical experiments show that sufficiently accurate estimates can be obtained for a reasonably wide range of n, and that the sample-mean method is more efficient. Finally, we develop an elementary fast Monte Carlo method to determine, with high probability, if two n-ellipsoids are separated or overlap.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"153 - 167"},"PeriodicalIF":0.8000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mcma-2021-2087","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The intersection or the overlap region of two n-dimensional ellipsoids plays an important role in statistical decision making in a number of applications. For instance, the intersection volume of two n-dimensional ellipsoids has been employed to define dissimilarity measures in time series clustering (see [M. Bakoben, T. Bellotti and N. M. Adams, Improving clustering performance by incorporating uncertainty, Pattern Recognit. Lett. 77 2016, 28–34]). Formulas for the intersection volumes of two n-dimensional ellipsoids are not known. In this article, we first derive exact formulas to determine the intersection volume of two hyper-ellipsoids satisfying a certain condition. Then we adapt and extend two geometric type Monte Carlo methods that in principle allow us to compute the intersection volume of any two generalized convex hyper-ellipsoids. Using the exact formulas, we evaluate the performance of the two Monte Carlo methods. Our numerical experiments show that sufficiently accurate estimates can be obtained for a reasonably wide range of n, and that the sample-mean method is more efficient. Finally, we develop an elementary fast Monte Carlo method to determine, with high probability, if two n-ellipsoids are separated or overlap.