Few-shot Named Entity Recognition with Joint Token and Sentence Awareness

IF 1.3 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Intelligence Pub Date : 2023-01-09 DOI:10.1162/dint_a_00195
Wen Wen, Yongbin Liu, Qiang Lin, Chunping Ouyang
{"title":"Few-shot Named Entity Recognition with Joint Token and Sentence Awareness","authors":"Wen Wen, Yongbin Liu, Qiang Lin, Chunping Ouyang","doi":"10.1162/dint_a_00195","DOIUrl":null,"url":null,"abstract":"ABSTRACT Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks. Recently, few-shot models have been used for Named Entity Recognition (NER). Prototypical network shows high efficiency on few-shot NER. However, existing prototypical methods only consider the similarity of tokens in query sets and support sets and ignore the semantic similarity among the sentences which contain these entities. We present a novel model, Few-shot Named Entity Recognition with Joint Token and Sentence Awareness (JTSA), to address the issue. The sentence awareness is introduced to probe the semantic similarity among the sentences. The Token awareness is used to explore the similarity of the tokens. To further improve the robustness and results of the model, we adopt the joint learning scheme on the few-shot NER. Experimental results demonstrate that our model outperforms state-of-the-art models on two standard Few-shot NER datasets.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":"5 1","pages":"767-785"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00195","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks. Recently, few-shot models have been used for Named Entity Recognition (NER). Prototypical network shows high efficiency on few-shot NER. However, existing prototypical methods only consider the similarity of tokens in query sets and support sets and ignore the semantic similarity among the sentences which contain these entities. We present a novel model, Few-shot Named Entity Recognition with Joint Token and Sentence Awareness (JTSA), to address the issue. The sentence awareness is introduced to probe the semantic similarity among the sentences. The Token awareness is used to explore the similarity of the tokens. To further improve the robustness and results of the model, we adopt the joint learning scheme on the few-shot NER. Experimental results demonstrate that our model outperforms state-of-the-art models on two standard Few-shot NER datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于联合标记和句子感知的少镜头命名实体识别
摘要:少镜头学习已经被提出并迅速成为一种可行的方法来完成各种任务。近年来,少量的镜头模型被用于命名实体识别(NER)。原型网络在少弹NER上显示出较高的效率。然而,现有的原型方法只考虑查询集和支持集中标记的相似度,而忽略了包含这些实体的句子之间的语义相似度。为了解决这个问题,我们提出了一种新的模型——基于联合令牌和句子感知的少镜头命名实体识别(JTSA)。引入句子感知来探测句子之间的语义相似度。令牌感知用于探索令牌的相似性。为了进一步提高模型的鲁棒性和结果,我们在少镜头NER上采用了联合学习方案。实验结果表明,我们的模型在两个标准的少射NER数据集上优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data Intelligence
Data Intelligence COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
6.50
自引率
15.40%
发文量
40
审稿时长
8 weeks
期刊最新文献
The Limitations and Ethical Considerations of ChatGPT Rule Mining Trends from 1987 to 2022: A Bibliometric Analysis and Visualization Classification and quantification of timestamp data quality issues and its impact on data quality outcome BIKAS: Bio-Inspired Knowledge Acquisition and Simulacrum—A Knowledge Database to Support Multifunctional Design Concept Generation Exploring Attentive Siamese LSTM for Low-Resource Text Plagiarism Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1