Optimal Sampling for the Population Coverage Survey of the New Italian Register Based Census

IF 0.5 4区 数学 Q4 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Official Statistics Pub Date : 2021-09-01 DOI:10.2478/jos-2021-0029
P. Righi, P. D. Falorsi, Stefano Daddi, Epifania Fiorello, P. Massoli, M. Terribili
{"title":"Optimal Sampling for the Population Coverage Survey of the New Italian Register Based Census","authors":"P. Righi, P. D. Falorsi, Stefano Daddi, Epifania Fiorello, P. Massoli, M. Terribili","doi":"10.2478/jos-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract For the first time in 2018 the Italian Institute of Statistics (Istat) implemented the annual Permanent Population Census which relies on the Population Base Register (PBR) and the Population Coverage Survey (PCS). This article provides a general overview of the PCS sampling design, which makes use of the PBR to correct population counts with the extended dual system estimator (Nirel and Glickman 2009). The sample allocation, proven optimal under a set of precision constraints, is based on preliminary estimates of individual probabilities of over-coverage and under-coverage. It defines the expected sample size in terms of individuals, and it oversamples the sub-populations subject to the risk of under/over coverage. Finally, the article introduces a sample selection method, which to the greatest extent possible satisfies the planned allocation of persons in terms of socio-demographic characteristics. Under acceptable assumptions, the article also shows that the sampling strategy enhances the precision of the estimates.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"37 1","pages":"655 - 671"},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2021-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract For the first time in 2018 the Italian Institute of Statistics (Istat) implemented the annual Permanent Population Census which relies on the Population Base Register (PBR) and the Population Coverage Survey (PCS). This article provides a general overview of the PCS sampling design, which makes use of the PBR to correct population counts with the extended dual system estimator (Nirel and Glickman 2009). The sample allocation, proven optimal under a set of precision constraints, is based on preliminary estimates of individual probabilities of over-coverage and under-coverage. It defines the expected sample size in terms of individuals, and it oversamples the sub-populations subject to the risk of under/over coverage. Finally, the article introduces a sample selection method, which to the greatest extent possible satisfies the planned allocation of persons in terms of socio-demographic characteristics. Under acceptable assumptions, the article also shows that the sampling strategy enhances the precision of the estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利新登记人口普查人口覆盖率调查的最佳抽样
摘要意大利统计研究所(Istat)于2018年首次实施了基于人口基数登记册(PBR)和人口覆盖率调查(PCS)的年度永久人口普查。本文提供了PCS抽样设计的一般概述,该设计利用PBR通过扩展的双系统估计器校正总体计数(Nirel和Glickman,2009)。样本分配在一组精度约束下被证明是最优的,它基于对过度覆盖和过度覆盖的个体概率的初步估计。它以个体为单位定义了预期的样本量,并对存在覆盖不足/覆盖过度风险的亚群体进行了过采样。最后,文章介绍了一种样本选择方法,该方法在最大程度上满足社会人口特征方面的人口计划分配。在可接受的假设下,文章还表明,抽样策略提高了估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Official Statistics
Journal of Official Statistics STATISTICS & PROBABILITY-
CiteScore
1.90
自引率
9.10%
发文量
39
审稿时长
>12 weeks
期刊介绍: JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.
期刊最新文献
Reliable event rates for disease mapping. Application of Sampling Variance Smoothing Methods for Small Area Proportion Estimation Answering Current Challenges of and Changes in Producing Official Time Use Statistics Using the Data Collection Platform MOTUS Small Area with Multiply Imputed Survey Data Temporally Consistent Present Population from Mobile Network Signaling Data for Official Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1