{"title":"Evaluation of Negative Inotropic Effects of a Isoquinoline Alkaloid N-14","authors":"I. Jumayev","doi":"10.31579/2692-9406/071","DOIUrl":null,"url":null,"abstract":"In studies, the alkaloid 1-(2-Chloro-4,5-methylenedioxyphenyl)-2-hydroxyethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (N-14) had a negative inotropic effect on the activity of the papillary muscle contraction of the rat heart detected. Ca2+ ions from SR play an important role in the process of contraction of the heart muscle. With this in mind, the negative inotropic effect of the N-14 alkaloid was investigated with the modification of the accumulation processes of Ca2+ ions to SR. To clarify this, we examined the effects of the alkaloid being studied on SERCA2a and RyR2. To do this, the inhibitor of SERCA2a - cyclopiazonic acid (CPA) and RyR activator caffeine, which provide the accumulation of Ca2+ ions in SR, were used.","PeriodicalId":72392,"journal":{"name":"Biomedical research and clinical reviews","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical research and clinical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31579/2692-9406/071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In studies, the alkaloid 1-(2-Chloro-4,5-methylenedioxyphenyl)-2-hydroxyethyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (N-14) had a negative inotropic effect on the activity of the papillary muscle contraction of the rat heart detected. Ca2+ ions from SR play an important role in the process of contraction of the heart muscle. With this in mind, the negative inotropic effect of the N-14 alkaloid was investigated with the modification of the accumulation processes of Ca2+ ions to SR. To clarify this, we examined the effects of the alkaloid being studied on SERCA2a and RyR2. To do this, the inhibitor of SERCA2a - cyclopiazonic acid (CPA) and RyR activator caffeine, which provide the accumulation of Ca2+ ions in SR, were used.