Characterising the frequency‐response of ultra‐soft polymers with the Virtual Fields Method

IF 1.8 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Strain Pub Date : 2021-05-18 DOI:10.1111/str.12386
Aaron Graham, C. Siviour
{"title":"Characterising the frequency‐response of ultra‐soft polymers with the Virtual Fields Method","authors":"Aaron Graham, C. Siviour","doi":"10.1111/str.12386","DOIUrl":null,"url":null,"abstract":"This paper presents a novel apparatus, combined with application of the Virtual Fields Method (VFM) for the high frequency characterisation of the mechanical response of ultra‐soft materials. The viscoelastic response is characterised under harmonic deviatoric loading at a range of frequencies using the dynamic VFM in the frequency domain. Obtaining useful high rate data on soft materials is challenging using typical test methodologies, as the low speed of sound in the material makes stress equilibrium difficult to obtain; additionally, the low stiffness results in small stresses and weak measurement signals. This novel apparatus and analysis method have been shown capable of obtaining important material characterisation data that would be impossible to access using currently existing test techniques.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/str.12386","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12386","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel apparatus, combined with application of the Virtual Fields Method (VFM) for the high frequency characterisation of the mechanical response of ultra‐soft materials. The viscoelastic response is characterised under harmonic deviatoric loading at a range of frequencies using the dynamic VFM in the frequency domain. Obtaining useful high rate data on soft materials is challenging using typical test methodologies, as the low speed of sound in the material makes stress equilibrium difficult to obtain; additionally, the low stiffness results in small stresses and weak measurement signals. This novel apparatus and analysis method have been shown capable of obtaining important material characterisation data that would be impossible to access using currently existing test techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用虚场法表征超软聚合物的频率响应
本文提出了一种新的装置,结合虚拟场法(VFM)的应用,用于超软材料机械响应的高频表征。使用频域中的动态VFM来表征在一定频率范围内的谐波偏载下的粘弹性响应。使用典型的测试方法获得软材料的有用高速率数据是一项挑战,因为材料中的低声速使应力平衡难以获得;此外,低刚度导致小的应力和弱的测量信号。这种新型设备和分析方法已被证明能够获得重要的材料表征数据,而使用当前现有的测试技术是不可能获得这些数据的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Strain
Strain 工程技术-材料科学:表征与测试
CiteScore
4.10
自引率
4.80%
发文量
27
期刊介绍: Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage. Strain welcomes papers that deal with novel work in the following areas: experimental techniques non-destructive evaluation techniques numerical analysis, simulation and validation residual stress measurement techniques design of composite structures and components impact behaviour of materials and structures signal and image processing transducer and sensor design structural health monitoring biomechanics extreme environment micro- and nano-scale testing method.
期刊最新文献
An artificial neural network for digital image correlation dynamic subset selection based on speckle pattern quality metrics A comparative study of Glinka and Neuber approaches for fatigue strength assessment on 42CrMoS4‐QT specimens Biaxial expansion due to compression experiments for measuring the failure strain of tubular samples On the use of an induced temperature gradient and full‐field measurements to investigate and model the thermomechanical behaviour of an austenitic stainless steel 316 Numerical and experimental investigation of the residual stress distribution of internal thread cold extrusion and tap wear
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1